Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (8): 104-109    DOI: 10.13523/j.cb.20170815
综述     
苯并恶唑嗪酮类化合物功能与生物合成研究进展
高洪江1,2, 李圣彦2, 汪海2, 林凤1, 张春宇1, 郎志宏2
1. 沈阳农业大学生物科学技术学院 沈阳 110866;
2. 中国农业科学院生物技术研究所 北京 100081
Progress on Function and Biosynthesis of Benzoxazinoids
GAO Hong-jiang1,2, LI Sheng-yan2, WANG Hai2, LIN Feng1, ZHANG Chun-yu1, LANG Zhi-hong2
1. Biological Science and Technology College, Shenyang Agricultural University, Shenyang 110866, China;
2. Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
 全文: PDF(582 KB)   HTML
摘要: 苯并恶唑嗪酮(benzoxazinoids,BXs)是植物体内一种重要的次生代谢物,因其具有防御作用和化感作用得到了广泛的关注和研究。随着基因组学及分子生物学的发展,苯并恶唑嗪酮的生物合成在分子领域的研究取得了很大的进展。介绍了苯并恶唑嗪酮概况、苯并恶唑嗪酮的功能以及苯并恶唑嗪酮生物合成参与基因及表达调控。
关键词: 苯并恶唑嗪酮抗病抗虫生物合成    
Abstract: Benzoxazinoids(BXs) are important secondary metabolites in plants.There has been a wide range of attention and research of them because of their role in defensive and allelopathy.With the development of genomics and molecular biology, the BXs biosynthesis and other molecular areas research has made great progress.The BXs profile, the function of BXs, the genetic basis of BXs biosynthesis and expression regulation were briefly introduced.
Key words: Benzoxazinoids    Disease resistance    Insect resistance    Biosynthesis
收稿日期: 2017-03-01 出版日期: 2017-08-25
ZTFLH:  Q819  
基金资助: 国家自然科学基金(31570272)、国家科技支撑计划(2015BAD02B01-5)资助项目
通讯作者: 张春宇, 郎志宏     E-mail: zglnsyauzhang@163.com;langzhihong@caas.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
汪海
高洪江
李圣彦
林凤
张春宇
郎志宏

引用本文:

高洪江, 李圣彦, 汪海, 林凤, 张春宇, 郎志宏. 苯并恶唑嗪酮类化合物功能与生物合成研究进展[J]. 中国生物工程杂志, 2017, 37(8): 104-109.

GAO Hong-jiang, LI Sheng-yan, WANG Hai, LIN Feng, ZHANG Chun-yu, LANG Zhi-hong. Progress on Function and Biosynthesis of Benzoxazinoids. China Biotechnology, 2017, 37(8): 104-109.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170815        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I8/104

[1] Makowska B, Bakera B, Rakoczy-Trojanowska M. The genetic background of benzoxazinoid biosynthesis in cereals. Acta Physiologiae Plantarum, 2015, 37(9):1-12.
[2] Virtanen A I, Hietala P K, Lundén R, et al. 2(3)-Benzoxazolinone, an anti-fusarium factor in rye seedlings. Acta Chemica Scandinavica, 1955, 9(9):1543-1544.
[3] Wahlroos Ö, Virtanen A I, Hammarsten E, et al. Precursors of 6-methoxybenzoxazolinone in maize and wheat plants, their isolation and some of their properties. Acta Chemica Scandinavica, 1959, 13(9):1906-1908.
[4] Niemeyer H M. Hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one:key defense chemicals of cereals. Journal of Agricultural & Food Chemistry, 2009, 57(5):1677.
[5] Hanhineva K, Rogachev I, Aura A M, et al. Qualitative characterization of benzoxazinoid derivatives in whole grain rye and wheat by LC-MS metabolite profiling. Journal of Agricultural & Food Chemistry, 2011, 59(3):921-927.
[6] Shudo K, Ishizaki T, Hashimoto Y, et al. Reaction of 4Acetoxy1,4-benzoxazin-3-one with amino acid derivatives. Heterocycles, 1983, 20(8):1481-1485.
[7] Klun J A, Tipton C L, Brindley T A. 2,4-Dihydroxy-7-methoxy-I,4-benzoxazin-3-one (DIMBOA), an active agent in the resistance of maize to the european corn borer1, 2,3. Journal of Economic Entomology, 1967, 60(6):1529-1533.
[8] Manuwoto S, Scriber J M. Neonate larval survival of European corn borers, Ostrinia nubilalis, on high and low dimboa genotypes of maize:Effects of light intensity and degree of insect in-breeding. Agriculture Ecosystems & Environment, 1985, 14(3-4):221-236.
[9] Betsiashvili M, Ahern K R, Jander G. Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17. Journal of Ex-perimental Botany, 2014, 66(2):571-578.
[10] Sasai H, Ishida M, Murakami K, et al. Species-specific glucosylation of DIMBOA in larvae of the rice armyworm. Bioscience Biotechnology & Biochemistry, 2009, 73(6):1333.
[11] Gianoli E, Niemeyer H M. DIBOA in wild poaceae:sources of resistance to the Russian wheat aphid (Diuraphis noxia) and the greenbug (Schizaphis graminum). Euphytica, 1998, 102(3):317-321.
[12] Tzin V, Lindsay P L, Christensen S A, et al. Genetic mapping shows intraspecific variation and transgressive segregation for caterpillar-induced aphid resistance in maize. Molecular Ecology, 2015, 24(22):5739-5750.
[13] 刘小红, 李健强, 周立刚,等. 丁布对小麦赤霉病菌和玉米小斑病菌的抑制作用. 菌物学报, 2004, 23(1):109-114. Liu X H, Li J Q, Zhou L G, et al. Inhibition effect of DIMBOA on Fusarium graminearum and Bipolaris maydis. Mycosystema, 2004, 23(1):109-114.
[14] 徐国锋, 郑永权, 纪明山. 丁布对小麦条锈病菌的抑制作用. 中国农学通报, 2006, 22(6):324-326. Xu G F, Zheng Y Q, Ji M S. Activity test on DIMBOA against Puccinia striiformis f·sp·tritic.Chinese Agricultural Science Bulletin, 2006, 22(6):324-326.
[15] Ahmad S, Veyrat N, Gordonweeks R, et al. Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiology, 2011, 157(1):317-327.
[16] Guo B, Zhang Y, Li S, et al. Extract from maize (Zea mays L.):antibacterial activity of DIMBOA and its derivatives against Ralstonia solanacearum. Molecules, 2016, 21(10):1397.
[17] Tabaglio V, Gavazzi C, Schulz M, et al. Alternative weed control using the allelopathic effect of natural benzoxazinoids from rye mulch. Agronomy for Sustainable Development, 2008, 28(3):397-401.
[18] Barnes J P, Putnam A R. Role of benzoxazinones in allelopathy by rye (Secale cereale L.). Journal of Chemical Ecology, 1987, 13(4):889-906.
[19] Nomura T, Ishihara A, Yanagita R C, et al. Three genomes differentially contribute to the bio-synthesis of benzoxazinones in hexaploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(45):16490-16495.
[20] Rad U V, Hüttl R, Lottspeich F, et al. Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize. Plant Journal, 2001, 28(6):633-642.
[21] Manuwoto S, Scriber J M. Consumption and utilization of experimentally altered corn by southern armyworm:Iron, nitrogen, and cyclic hydroxamates. Journal of Chemical Ecology, 1985, 11(11):1469-1483.
[22] Epstein W W, Rowsemitt C N, Berger P J, et al. Dynamics of 6-methoxybenzoxazolinone in winter wheat:Effects of photoperiod and temperature. Journal of Chemical Ecology, 1986, 12(10):2011-2020.
[23] Frey M, Gierl A. Analysis of a chemical plant defense mechanism in grasses. Science, 1997, 277(5326):696-699.
[24] Von R U, Hüttl R, Lottspeich F, et al. Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize. Plant Journal, 2001, 28(6):633-642.
[25] Jonczyk R, Schmidt H, Osterrieder A, et al. Elucidation of the final reactions of DIMBOA-glucoside biosynthesis in maize:characterization of Bx6 and Bx7. Plant Physiology, 2008, 146(3):1053-1063.
[26] Sicker D, Frey M, Schulz M, et al. Role of natural benzoxazinones in the survival strategy of plants. International Review of Cytology, 2000, 198(4):319.
[27] Meihls L N, Handrick V, Glauser G, et al. Natural variation in maize aphid resistance is associated with 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside methyltransferase activity. Plant Cell, 2013, 25(6):2341-2355.
[28] Handrick V, Robert C A, Ahern K R, et al. Biosynthesis of 8-O-methylated benzoxazinoid defense compounds in maize. Plant Cell, 2016, 28(7):1682-1700.
[29] Sue M, Nakamura C, Nomura T. Dispersed benzoxazinone gene cluster:molecular characterization and chromosomal localization of glucosyltransferase and glucosidase genes in wheat and rye. Plant Physiology, 2011, 157(3):985-997.
[30] Wouters F C, Blanchette B, Gershenzon J, et al. Plant defense and herbivore counter-defense:benzoxazinoids and insect herbivores. Phytochemistry Reviews, 2016, 15(6):1127-1151.
[1] 张恒,刘慧燕,潘琳,王红燕,李晓芳,王彤,方海田. 生物法合成γ-氨基丁酸的研究策略*[J]. 中国生物工程杂志, 2021, 41(8): 110-119.
[2] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[3] 梁晋刚,张旭冬,毕研哲,王颢潜,张秀杰. 转基因抗虫玉米发展现状与展望*[J]. 中国生物工程杂志, 2021, 41(6): 98-104.
[4] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[5] 翟君叶,成旭,孙泽敏,李春,吕波. 毛蕊花糖苷的生物合成研究进展[J]. 中国生物工程杂志, 2021, 41(5): 94-104.
[6] 王光路, 王梦园, 周忆菲, 马科, 张帆, 杨雪鹏. 吡咯喹啉醌生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 103-113.
[7] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[8] 刘啸尘, 范代娣, 杨帆, 武占省. 人参皂苷化合物生物合成进展 *[J]. 中国生物工程杂志, 2021, 41(1): 80-93.
[9] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[10] 段海荣,魏赛金,黎循航. 铜绿假单胞菌中鼠李糖脂生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 43-51.
[11] 邓廷山,武国干,孙宇,唐雪明. 苯乳酸生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 62-68.
[12] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[13] 孙恒,王婧,曾令高,王建华. 肽核酸在病毒检测与治疗中的应用 *[J]. 中国生物工程杂志, 2020, 40(1-2): 146-153.
[14] 潘彤彤,陈永平. 重型/危重型新型冠状病毒肺炎关键治疗技术研究进展[J]. 中国生物工程杂志, 2020, 40(1-2): 78-83.
[15] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.