Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (8): 84-95    DOI: 10.13523/j.cb.20170813
综述     
纳米抗体异源表达的研究进展
李丹, 黄鹤
天津大学化工学院系统生物工程教育部重点实验室 天津 300350
Heterologous Expression of Nanobodies:a Recent Progress
LI Dan, HUANG He
School of Chemical Engineering and Technology, Key Laboratory of Systems Biotechnology of the Ministry of Education, Tianjin University, Tianjin 300350, China
 全文: PDF(706 KB)   HTML
摘要: 羊驼体内存在天然缺失轻链的重链抗体(HcAb),其单域抗原结合片段也称为VHH或纳米抗体(nanobody,Nb),是目前已知的最小抗原结合片段。与传统抗体相比,纳米抗体具有分子量小(12~15kDa)、稳定性好和免疫原性低等特点,这些特点使得VHH在基础研究、诊断及治疗上具有极大的应用价值,目前已有多种纳米抗体进入了临床研究阶段。综述了近年来VHH在革兰氏阴性菌(大肠杆菌)、革兰氏阳性菌(芽孢杆菌和乳酸杆菌)、酵母、丝状真菌、昆虫细胞、哺乳动物细胞和植物细胞中异源表达的研究现状,包括表达系统、宿主、载体特点、载体构建方式及产量等;从分子水平、表达水平和理性设计三个层面探讨了纳米抗体产量提高的策略,以期为纳米抗体研究者提供借鉴和思路。
关键词: VHH表达系统纳米抗体异源表达    
Abstract: Heavy chain antibodies(HcAb) without light chains are naturally produced by camelids. The single domain antigen-binding fragment of HcAb is referred to as VHH or nanobody (Nb), which is the smallest antigen-binding entity at present. Several characteristics such as low molecular weight, high stability, and low immunogenicity make the use of nanobodies superior to the conventional antibodies. Currently, nanobodies are highly valuable antibodies for various applications, including fundamental research, diagnostics, and therapeutics. A variety of nanobodies are investigated in clinical researches. The recent progresses of heterologous expression of nanobodies in seven expression systems, including Gram-negative and positive bacteria, yeasts, filamentous fungi, insect cells, mammalian cells and plant cells were focused on, and the expression systems, hosts, characteristics of vectors, construction of vectors and yield of nanobodies were summarized. The strategies to increase the yield of nanobodies are discussed from molecular level, expression level and rational design.
Key words: Heterologous expression    Nanobody    Expression systems
收稿日期: 2017-03-05 出版日期: 2017-08-25
ZTFLH:  Q819  
基金资助: 国家自然科学基金资助项目(31470967)
通讯作者: 黄鹤     E-mail: huang@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄鹤
李丹

引用本文:

李丹, 黄鹤. 纳米抗体异源表达的研究进展[J]. 中国生物工程杂志, 2017, 37(8): 84-95.

LI Dan, HUANG He. Heterologous Expression of Nanobodies:a Recent Progress. China Biotechnology, 2017, 37(8): 84-95.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170813        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I8/84

[1] Mullard A. 2016 FDA drug approvals. Nature Reviews Drug Discovery, 2017, 16:73-76.
[2] Hamers C C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature, 1993, 363(6428):446-448.
[3] Holliger P, Hudson P J. Engineered antibody fragments and the rise of single domains. Nature Biotechnology, 2005, 23(9):1126-1136.
[4] Edwin M, Robert K Z. Topline results from the Phase Ⅱb monotherapy study of vobarilizumab, ALX-0061(anti-IL-6R), in patients with moderate to severe RA. Ablynx webcast presentation, 2016.
[5] Http://www.ablynx.com
[6] Steeland S, Vandenbroucke R E, Libert C. Nanobodies as therapeutics:big opportunities for small antibodies. Drug Discovery Today, 2016, 21(7):1076-1113.
[7] Ablynx's Partner Initiates a Phase I Study and Doses First Healthy Volunteer with ALX0761. Ablynx, 2013.
[8] Peyvandi F, Scully M, Kremer Hovinga J A, et al. Caplacizumab for acquired thrombotic thrombocytopenic purpura. New England Journal of Medicine, 2016, 374(6):511.
[9] Harmsen M M, De Haard H J. Properties, production, and applications of camelid single-domain antibody fragments. Applied Microbiology and Biotechnology, 2007, 77(1):13-22.
[10] Mei S, Yang X, Dan W, et al. Anti-idiotypicnanobody:A strategy for development of sensitive and green immunoassay for Fumonisin B 1. Talanta, 2015, 143:388-393.
[11] Zarschler K, Witecy S, Kapplusch F, et al. High-yield production of functionalsoluble single-domain antibodies in the cytoplasm of Escherichia coli. Microbial Cell Factories, 2013, 12:97-110.
[12] Qiu Y L, He Q H, Xu Y, et al. Deoxynivalenol-mimic nanobody isolated from a naïve phage display nanobody library and its application in immunoassay. AnalyticaChimicaActa, 2015, 887:201-208.
[13] Farajpour Z, Rahbarizadeh F, Kazemi B, et al. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment. Biochemical & Biophysical Research Communications, 2014, 446(1):132-136.
[14] Fridy P C, Thompson M K, Ketaren N E, et al. Engineered high-affinity nanobodies recognizing staphylococcal Protein A and suitable for native isolation of protein complexes. Analytical Biochemistry, 2015, 477:92-94.
[15] Richard G, Meyers A J, Mclean M D, et al. In vivo neutralization of α-cobratoxin with high-affinity Llama single-domain antibodies (VHHs) and a VHH-Fc antibody. Plos One, 2013, 8(7):e69495.
[16] Takayama Y, Akutsu H. Expression in periplasmic space of Shewanellaoneidensis. Protein Expression & Purification, 2007, 56(1):80-84.
[17] Gophna U, Ideses D, Rosen R, et al. OmpA of a septicemic Escherichia coli O78——secretion and convergent evolution. International Journal of Medical Microbiology Ijmm, 2004, 294(6):373-381.
[18] Wang Y, Ding H, Du P, et al. Production of phoA, promoter-controlled human epidermal growth factor in fed-batch cultures of Escherichia coli, YK537(pAET-8). Process Biochemistry, 2005, 40(9):3068-3074.
[19] Kaczmarek J Z, Skottrup P D. Selection and characterization of camelid nanobodies towards urokinase-type plasminogen activator. Molecular Immunology, 2015, 65(2):384-390.
[20] Xu C, Liu X, Zhang C, et al. Establishment of a sensitive time-resolved fluoroimmunoassay for detection of Bacillus thuringiensis Cry1Ie toxin based nanobody from a phage display library. Analytical Biochemistry, 2017, 518:53-59.
[21] Behdani M, Zeinali S, Karimipour M, et al. Development of VEGFR2-specific nanobody pseudomonas exotoxin A conjugated to provide efficient inhibition of tumor cell growth. New Biotechnology, 2013, 30(2):205-209.
[22] Salema V, Fernández L Á. High yield purification of nanobodies from the periplasm of E. coli, as fusions with the maltose binding protein. Protein Expression & Purification, 2013, 91(1):42-48.
[23] Wörn A, Auf M A, Escher D, et al. Correlation between in vitro stability and in vivo performance of anti-GCN4 intrabodies as cytoplasmic inhibitors. Journal of Biological Chemistry, 2000, 275(4):2795-2803.
[24] Martineau P, Jones P, Winter G. Expression of an antibody fragment at high levels in the bacterial cytoplasm. Journal of Molecular Biology, 1998, 280(1):117-127.
[25] Djender S, Schneider A, Beugnet A, et al. Bacterial cytoplasm as an effective cell compartment for producing functional VHH-based affinity reagents and Camelidae IgG-like recombinant antibodies. Microbial Cell Factories, 2014, 13(1):140-149.
[26] Marco A D. Recombinant antibody production evolves into multiple options aimed at yielding reagents suitable for application-specific needs. Microbial Cell Factories, 2015, 14(1):125-141.
[27] Habib I, Smolarek D, Hattab C, et al. VHH (nanobody) directed against human glycophorin A:A tool for autologous red cell agglutination assays. Analytical Biochemistry, 2013, 438(1):82.
[28] Veggiani G, De M A. Improved quantitative and qualitative production of single-domain intrabodies mediated by the co-expression of Erv1p sulfhydryl oxidase. Protein Expression And Purification, 2011, 79(1):111-114.
[29] Lakowitz A, Biedendieck R, Krull R. Recombinant production of the antibody fragment D1.3scFv in Bacillus sp. New Biotechnology, 2016, 33:S195-S195.
[30] Mizukami M, Tokunaga H, Onishi H, et al. Highly efficient production of VHH antibody fragments in Brevibacillus choshinensis expression system. Protein Expression & Purification, 2015, 105:23-32.
[31] Pant N, Hultberg A, Zhao Y, et al. Lactobacilli expressing variable domain of llama heavy-chain antibody fragments (lactobodies) confer protection against rotavirus-induced diarrhea. Journal of Infectious Diseases, 2006, 194(11):1580-1588.
[32] Günaydin G, Álvarez B, Lin Y, et al. Co-expression of anti-rotavirus proteins (Llama VHH Antibody Fragments) in Lactobacillus:Development and Functionality of Vectors Containing Two Expression Cassettes in Tandem. Plos One, 2014, 9(4):e96409.
[33] Andersen K K, Strokappe N M, Hultberg A, et al. Neutralization of Clostridium difficile toxin B mediated by engineered lactobacilli producing single domain antibodies. Infection & Immunity, 2016, 84(2):395-406.
[34] Frenken L G, Rh V D L, Hermans P W, et al. Isolation of antigen specific llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae. Journal of Biotechnology, 2000, 78(1):11-21.
[35] Thomassen Y E, Meijer W, Sierkstra L, et al. Large-scale production of V HH, antibody fragments by Saccharomyces cerevisiae. Enzyme & Microbial Technology, 2002, 30(3):273-278.
[36] Gorlani A, Hulsik D L, Adams H, et al. Antibody engineering reveals the important role of J segments in the production efficiency of llama single-domain antibodies in Saccharomyces cerevisiae. Protein Engineering Design & Selection Peds, 2012, 25(1):39-46.
[37] Orman M A, Calik P, Ozdamar T H. The influence of carbon sources on recombinant-human-growth-hormone production by Pichia pastoris is dependent on phenotype:a comparison of Muts and Mut+ strains. Biotechnology & Applied Biochemistry, 2009, 52(3):245-255.
[38] Schotte P. Pichia pastoris Mut S strains are prone to misincorporation of O-methyl-l -homoserine at methionine residues when methanol is used as the sole carbon source. Microbial Cell Factories, 2016, 15(1):1-9.
[39] Baghban R, Gargari S L, Rajabibazl M, et al. Camelid-derived heavy chain nanobody against Clostridium botulinum neurotoxin E in Pichia pastoris. Biotechnology & Applied Biochemistry, 2014, 63(2):200-205.
[40] Ji X, Lu W, Zhou H, et al. Covalently dimerized Camelidae antihuman TNFa single-domain antibodies expressed in yeast Pichia pastoris show superior neutralizing activity. Applied Microbiology and Biotechnology, 2013, 97(19):8547-8558.
[41] Djender S, Schneider A, Beugnet A, et al. Bacterial cytoplasm as an effective cell compartment for producing functional VHH-based affinity reagents and Camelidae IgG-like recombinant antibodies. Microbial Cell Factories, 2014, 13(1):140.
[42] Ward P P, Piddington C S, Cunningham G A, et al. A system for production of commercial quantities of human lactoferrin:a broad spectrum natural antibiotic. Biotechnology, 1995, 13(5):498-503.
[43] Verdoes J C, Punt P J, Burlingame R, et al. Original research:A dedicated vector for efficient library construction and high throughput screening in the hyphal fungus Chrysosporium lucknowense. Industrial Biotechnology, 2007, 3(1):48-57.
[44] Okazaki F, Aoki J, Tabuchi S, et al. Efficient heterologous expression and secretion in Aspergillus oryzae of a llama variable heavy-chain antibody fragment VHH against EGFR. Applied Microbiology and Biotechnology, 2012, 96(1):81-88.
[45] Kazemilomedasht F, Behdani M, Bagheri K P, et al. Inhibition of angiogenesis in human endothelial cell using VEGF specific nanobody. Molecular Immunology, 2015, 65(1):58-67.
[46] Hisada, Hiromoto, Tsutsumi, et al. High production of llama variable heavy-chain antibody fragment (VHH):fused to various reader proteins by Aspergillus oryzae. Applied Microbiology and Biotechnology, 2013, 97(2):761-766.
[47] Lackner A, Kreidl E, Peter-Vörösmarty B, et al. Stable protein expression in mammalian cells using baculoviruses. Methods in Molecular Biology, 2012, 801:75-92.
[48] Davis T R, Wickham T J, Mckenna K A, et al. Comparative recombinant protein production of eight insect cell lines. In Vitro Cellular & Developmental Biology-Animal, 1993, 29(5):388-390.
[49] Gómez-Sebastián S. Rotavirus A-specific single-domain antibodies produced in baculovirus-infected insect larvae are protective in vivo. Bmc Biotechnology, 2012, 12(1):59.
[50] Frenzel A, Hust M, Schirrmann T. Expression of recombinant antibodies. Frontiers in Immunology, 2013, 4:217.
[51] Hasemann C A, Capra J D. High-level production of a functional immunoglobulin heterodimer in a baculovirus expression system. Proceedings of the National Academy of Sciences, 1990, 87(10):3942-3946.
[52] Vega C G, Bok M, Vlasova A N, et al. Recombinant monovalent llama-derived antibody fragments (VHH) to rotavirus VP6 protect neonatal gnotobiotic piglets against human rotavirus-induced diarrhea. Plos Pathogens, 2013, 9(5):e1003334.
[53] Beck A, Wagner-Rousset E, Bussat M C, et al. Trends in glycosylation, glycoanalysis and glycoengineering of therapeutic antibodies and Fc-fusion proteins. 2009, 9(6):482-501.
[54] Dumont J, Euwart D, Mei B, et al. Human cell lines for biopharmaceutical manufacturing:history, status, and future perspectives. Critical Reviews in Biotechnology, 2015, 36(6):1-13.
[55] Renate K, David R. Advances in recombinant antibody manufacturing. Applied Microbiology and Biotechnology, 2016, 100(8):3451-3461.
[56] Kuczewski M, Schirmer E, Lain B, et al. A single-use purification process for the production of a monoclonal antibody produced in a PER.C6 human cell line. Biotechnology Journal, 2011, 6(1):56.
[57] Hasegawa H, Woods C E, Kinderman F, et al. Russell body phenotype is preferentially induced by IgG mAb clones with high intrinsic condensation propensity:relations between the biosynthetic events in the ER and solution behaviors in vitro. Mabs, 2014, 6(6):1518-1532.
[58] Jäger V, Büssow K, Wagner A, et al. High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells. Bmc Biotechnology, 2013, 13(1):52.
[59] Bazl M R, Rasaee M J, Foruzandeh M, et al. Production of chimeric recombinant single domain antibody-green fluorescent fusion protein in Chinese hamster ovary cells. Hybridoma, 2007, 26(1):1-9.
[60] Agrawal V, Slivac I, Perret S, et al. Stable expression of chimeric heavy chain antibodies in CHO cells. Methods in Molecular Biology, 2012, 911(911):287-303.
[61] Rotman M, Welling M M, Boogaard M L, et al. Fusion of hIgG1-Fc to 111In-anti-amyloid single domain antibody fragment VHH-pa2H prolongs blood residential time in APP/PS1 mice but does not increase brain uptake. Nuclear Medicine & Biology, 2015, 42(8):695-702.
[62] Qasemi M, Behdani M, Shokrgozar M A, et al. Construction and expression of an anti-VEGFR2 nanobody-Fc fusionbody in NS0 host cell. Protein Expression & Purification, 2016, 123:19-25.
[63] Abe M, Yuki Y, Kurokawa S, et al. A rice-based soluble form of a murine TNF-specific llama variable domain of heavy-chain antibody suppresses collagen-induced arthritis in mice. Journal of Biotechnology, 2014, 175(1):45-52.
[64] De B S, Nolf J, De M T, et al. Fusion of an Fc chain to a VHH boosts the accumulation levels in Arabidopsis seeds. Plant Biotechnology Journal, 2013, 11(8):1006-1016.
[65] Angov E. Codon usage:Nature's roadmap to expression and folding of proteins. Biotechnology Journal, 2011, 6(6):650-659.
[66] Lindgreen S. Codon evolution:Mechanisms and models. Trends in Evolutionary Biology, 2012, 4(1):8.
[67] Grote A, Hiller K, Scheer M, et al. JCat:a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 2005, 33(Web Server issue):W526.
[68] Webster G, Teh A Y, Ma J K. Synthetic gene design——The rationale for codon optimization and implications for molecular pharming in plants. Biotechnology & Bioengineering, 2016.
[69] Schlegel S, Rujas E, Ytterberg A J, et al. Optimizing heterologous protein production in the periplasm of E. coli by regulating gene expression levels. Microbial Cell Factories, 2013, 12(1):24.
[70] Levy R, Weiss R, Chen G, et al. Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expression Purification, 2001, 23(2):338-347.
[71] Sadr V, Saffar B, Emamzadeh R. Functional expression and purification of recombinant Hepcidin25 production in Escherichia coli using SUMO fusion technology. Gene, 2017, 610:112-117.
[72] Lian J, Jin R, Zhao H. Construction of plasmids with tunable copy numbers in Saccharomyces cerevisiae and their applications in pathway optimization and multiplex genome integration. Biotechnology & Bioengineering, 2016, 113(11):2462-2473.
[73] Gupta S K, Shukla P. Microbial platform technology for recombinant antibody fragment production:A review. Critical Reviews in Microbiology, 2017:31-42.
[74] Khan A H, Bayat H, Rajabibazl M, et al. Humanizing glycosylation pathways in eukaryotic expression systems. World Journal of Microbiology & Biotechnology, 2017, 33(1):4.
[75] Zhao J B, Wei D Z, Tong W Y. Identification of Escherichia coli host cell for high plasmid stability and improved production of antihuman ovarian carcinoma x antihuman CD3 single-chain bispecific antibody. Applied Microbiology and Biotechnology, 2007, 76(4):795-800.
[76] Di W, Yang S, Yin S, et al. Characterization of single-domain antibodies against Foot and Mouth Disease Virus (FMDV) serotype O from a camelid and imaging of FMDV in baby hamster kidney-21 cells with single-domain antibody-quantum dots probes. BMC Veterinary Research, 2015, 11(1):120-130.
[77] Maffey L, Vega C G, Miño S, et al. Anti-VP6 VHH:An experimental treatmentfor rotavirus A-associated disease. Plos One, 2016, 11(9):1-27.
[78] 甄永苏,邵荣光.抗体工程药物.北京:化学工业出版社,2002.48. Zhen Y S, Shao R G. Antibody Engineering Pharmaceutics.Beijing:Chemical Industry Press,2002.48.
[79] Rahbarizadeh F, Rasaee M J, Forouzandeh M, et al. Over expression of anti-MUC1 single-domain antibody fragments in the yeast Pichia pastoris. Molecular Immunology, 2006, 43(5):426-435.
[80] Kipriyanov S M, Moldenhauer G, Little M. High level production of soluble single chain antibodies in small-scale Escherichia coli cultures. Journal of Immunological Methods, 1997, 200(1-2):69.
[81] Miethe S, Meyer T, Wöhlbruhn S, et al. Production of single chain fragment variable (scFv) antibodies in Escherichia coli using the LEXTM bioreactor. Journal of Biotechnology, 2013, 163(2):105.
[82] Soler M A, De M A, Fortuna S. Molecular dynamics simulations and docking enable to explore the biophysical factors controlling the yields of engineered nanobodies. Scientific Reports, 2016, 6:34869.
[83] Liu J L, Zabetakis D, Goldman E R, et al. Selection and characterization of single domain antibodies against human CD20. Molecular Immunology, 2016, 78:146-154.
[84] Li G, Zhu M, Ma L, et al. Generation of small single domain nanobody binders for sensitive detection of testosterone by electrochemical impedance spectroscopy. Acs Applied Materials & Interfaces, 2016, 8(22).
[85] Xue G, Zhu M, Li G, et al. Specific determination of influenza H7N2 virus based on biotinylated single-domain antibody from a phage-displayed library. Analytical Biochemistry, 2015, 500:66-72.
[86] Chen J, He Q H, Xu Y, et al. Nanobody medicated immunoassay for ultrasensitive detection of cancer biomarker alpha-fetoprotein. Talanta, 2016, 147:523-530.
[87] Wang P, Li G, Yan J, et al. Bactrian camel nanobody-based immunoassay for specific and sensitive detection of Cry1Fa toxin. Toxicon, 2014, 92:186-192.
[88] Darvish M, Behdani M, Shokrgozar M A, et al. Development of protective agent against Hottentotta saulcyi venom using camelid single-domain antibody. Molecular Immunology, 2015, 68(2):412-420.
[89] Yan J, Wang P, Zhu M, et al. Characterization and applications of nanobodies against human procalcitonin selected from a novel naive nanobody phage display library. Journal of Nanobiotechnology, 2015, 13(1):33.
[90] Bakherad H, Mousavi G S, Rasooli I, et al. In vivo neutralization of botulinum neurotoxins serotype E with heavy-chain camelid antibodies (VHH). Molecular Biotechnology, 2013, 55(2):159-167.
[91] Mizukami M, Tokunaga H, Onishi H, et al. Highly efficient production of VHH antibody fragments in Brevibacillus choshinensis expression system. Protein Expression & Purification, 2015, 105:23-32.
[92] Marcobal A, Liu X, Zhang W, et al. Expression of HIV-1 neutralizing antibody fragments using human vaginal lactobacillus. Aids Research & Human Retroviruses, 2016, 32(10).
[93] Ezzine A, Sonia M E, Bouhaouala-Zahar B, et al. Efficient expression of the anti-AahI' scorpion toxin nanobody under a new functional form in a Pichia pastoris system. Biotechnology & Applied Biochemistry, 2012, 59(1):15-21.
[94] Adams H, Horrevoets W M, Adema S M, et al. Inhibition of biofilm formation by camelid single-domain antibodies against the flagellum of Pseudomonas aeruginosa. Journal of Biotechnology, 2014, 186:131-138.
[95] Hofmeyer T, Bulani S I, Grzeschik J, et al. Protein production in Yarrowia lipolytica via fusion to the secreted lipase Lip2p. Molecular Biotechnology, 2014, 56(1):79-90.
[1] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[2] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[3] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[4] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[5] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[6] 位薇,常保根,王英,路福平,刘夫锋. Tau蛋白核心片段306~378的异源表达、纯化及聚集特性验证*[J]. 中国生物工程杂志, 2020, 40(5): 22-29.
[7] 胡益波,皮畅钰,张哲,向柏宇,夏立秋. 丝状真菌蛋白表达系统研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 94-104.
[8] 梅雅贤,王玥,罗文新. 纳米抗体在传染病的预防、诊断和治疗中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 24-34.
[9] 齐家龙, 高瑞雨, 靳输梅, 高福兰, 杨旭, 马雁冰, 刘存宝. 水痘-带状疱疹病毒糖蛋白E在昆虫细胞中的表达、鉴定及免疫原性分析 *[J]. 中国生物工程杂志, 2019, 39(8): 17-24.
[10] 李吉萍,包昌杰,陈光,张斯童. 木聚糖酶异源表达的研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 91-99.
[11] 史超硕,李登科,曹雪,袁航,张钰文,于江悦,路福平,李玉. 两个不同启动子及其组合对碱性蛋白酶AprE异源表达的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 17-23.
[12] 陈子晗,周海胜,尹新坚,吴坚平,杨立荣. Amphibacillus xylanus谷氨酸脱氢酶基因工程菌培养条件优化 *[J]. 中国生物工程杂志, 2019, 39(10): 58-66.
[13] 化磊召,易小萍,储炬,庄英萍,张嗣良. 基于PAT的PCV2 VLPs生产过程优化与控制研究[J]. 中国生物工程杂志, 2018, 38(8): 50-58.
[14] 李金晶,许菲,季艳伟,舒梅,涂追,付金衡. 抗c-Myc标签纳米抗体的筛选与应用[J]. 中国生物工程杂志, 2018, 38(2): 61-67.
[15] 方媛,徐广贤,王羡,王红霞,潘俊斐. 双峰驼源天然噬菌体纳米抗体展示库的构建及抗GDH纳米抗体筛选 *[J]. 中国生物工程杂志, 2018, 38(12): 49-56.