Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (8): 31-38    DOI: 10.13523/j.cb.20170805
研究报告     
Arthrobacter sp.2PR降解2-羟基吡啶动力学及降解特性研究
胡春辉1,2, 徐青1, 于浩1
1. 青岛农业大学生命科学学院 青岛 266109;
2. 中国海洋大学环境科学与工程学院 青岛 266100
Characteristics and Kinetic Study of 2-Hydroxypyridine Degradation by a Novel Bacterium Arthrobacter sp. 2PR
HU Chun-Hui1,2, XU Qing1, YU Hao1
1. College of Life Science, Qingdao Agricultural University, Qingdao 266109, China;
2. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
 全文: PDF(900 KB)   HTML
摘要: 从辽河口石油污染土壤中筛选到一株能够以2-羟基吡啶作为唯一碳源、氮源和能源进行生长的菌株2PR,基于形态学观察、16S rRNA基因序列分析鉴定菌株2PR属于节杆菌属(Arthrobacter)。菌株2PR生长和降解2-羟基吡啶的最适条件是30℃,pH为7.0。当2-羟基吡啶初始浓度为6.0mg/ml时,120h菌株2PR对2-羟基吡啶的降解效率为94.48%,初始2-羟基吡啶浓度为8.0mg/ml时,156h的降解效率为89.21%。对2-羟基吡啶降解动力学过程进行模拟,结果显示菌株2PR生长和降解过程符合logisitic模型,该模型为环境中2-羟基吡啶的生物降解提供了理论参考。休止细胞反应和中间代谢产物检测表明,菌株2PR在降解2-羟基吡啶的过程中生成了蓝色化合物4,5,4',5'-tetrahydroxy-3,3'-diazadiphenoquinone-(2,2')。推测该菌株降解2-羟基吡啶的途径可能是首先由双加氧酶催化生成2,3,6-三羟基吡啶,后者会自发形成蓝色中间代谢产物,2,3,6-三羟基吡啶发生开环反应,最终被完全降解。菌株2PR是已报道菌株中2-羟基吡啶耐受能力和降解能力最强的菌株,在污染物生物修复方面具有广阔的应用前景。
关键词: 2-羟基吡啶动力学微生物降解节杆菌2PR    
Abstract: A novel strain, which could use 2-hydroxypyridine (2HP) as the sole source of carbon, nitrogen, and energy, was isolated from petroleum-contaminated soil at the Liaohe estuarine wetland. Strain 2PR was identified as Arthrobacter based on the morphology and 16S rRNA gene sequence. The optimum growth and degradation condition upon 2PR is 30℃ and pH 7.0, respectively. Under this condition, 2HP degradation rate were 97.34%, 94.95%, 94.48% and 89.21% with 2, 4, 6 and 8 mg/ml initial concentration of 2HP at 42, 96, 120 and 156 h, respectively. Strain growth and 2HP degradation kinetics studies indicated that the strain followed Logisitic model, which could provide a theoretical and technical reference for the biodegradation of 2HP. The color of strain 2PR culture upon 2HP-MSN changed from colorless to blue, and then turned to brown. The blue pigment, which was observed at the culture of strain 2PR, was identified as 4,5,4',5'-tetrahydroxy-3,3'-diazadiphenoquinone-(2,2') by high performance liquid chromatography (HPLC) and high-performance liquid chromatography-mass spectrometry (LC-MS) analysis. The LC-MS signal with m/z=249.1 was observed in resting cells reaction sample with 2HP as the substrate. The degradation of 2HP might be achieved by a dioxygenase to produce 2,3,6-trihydroxypyridine, which could transformed to the blue pigment spontaneously, and then 2,3,6-trihydroxypyridine was converted with an pyridine-ring cleavage reaction. Among all the reported strains, strain 2PR has the strongest tolerance and the highest 2HP degradation efficiency at present. The strain has a promising application potential for 2HP waste treatment.
Key words: 2-hydroxypyridine    Kinetics    Biodegradation    Arthrobacter sp.2PR
收稿日期: 2016-11-26 出版日期: 2017-08-25
ZTFLH:  Q819  
基金资助: 国家自然科学基金(31600086)、山东省自然科学基金青年基金(ZR2016CQ06)资助项目
通讯作者: 于浩     E-mail: yuhaosunshine@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐青
胡春辉
于浩

引用本文:

胡春辉, 徐青, 于浩. Arthrobacter sp.2PR降解2-羟基吡啶动力学及降解特性研究[J]. 中国生物工程杂志, 2017, 37(8): 31-38.

HU Chun-Hui, XU Qing, YU Hao. Characteristics and Kinetic Study of 2-Hydroxypyridine Degradation by a Novel Bacterium Arthrobacter sp. 2PR. China Biotechnology, 2017, 37(8): 31-38.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170805        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I8/31

[1] Kaiser J P, Feng Y, Bollag J M. Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions. Microbiology Reviews, 1996, 60(3):483-498.
[2] Yu H, Hausinger R, Tang H, et al. Mechanism of the 6-hydroxy-3-succinoyl-pyridine 3-monooxygenase flavoprotein from Pseudomonas putida S16. Journal of Biological Chemistry. 2014(289):29158-29170.
[3] Yao Y, Tang H, Ren H, et al. Iron(Ⅱ)-dependent dioxygenase and N-formylamide deformylase catalyze the reactions from 5-hydroxy-2-pyridone to maleamate. Scientific Report. 2013,3(11):3235.
[4] Semenaite R, Gasparaviciute R, Duran R, et al. Genetic diversity of 2-hydroxypyridine-degrading soil bacteria. Biologija, 2003, 2:27-30.
[5] Sun J Q, Xu L, Tang Y Q, et al. Bacterial pyridine hydroxylation is ubiquitous in environment. Applied Microbiology and Biotechnology, 2014, 98(1):455-464
[6] Kolenbrander P E, Lotong N, Ensign J C. Growth and pigment production by Arthrobacter pyridinolis n. sp. Archives of Microbiology, 1976, 110(2-3):239-245.
[7] Kolenbrander P E, Weinberger M. 2-Hydroxypyridine metabolism and pigment formation in three Arthrobacter species. Journal of Bacteriology, 1977, 132(1):51-59.
[8] Vaitekunas J, Gasparaviciute R, Rutkiene R, et al. A 2-hydroxypyridine catabolism pathway in Rhodococus rhodochrous strain PY11. Applied and Environmental Microbiology, 2016, 82(4):1264-1273.
[9] Cain R B, Houghton C, Wright K A. Microbial metabolism of the puridine ring. Metabolism of 2-and 3-hydroxypyridines by the maleamate pathway in Achromobacter sp.. Biochemical Journal, 1974, 140(2):293-300.
[10] Shukla O P, Kaul S M. Microbiological transformation of pyridine N-oxide and pyridine by Nocardia sp.. Canadian Journal of Microbiology, 1986, 32(4):330-341.
[11] Knackmuss H J, Beckmann W. The structure of nictine blue from Arthrobacter oxidans. Arch. Mikrobiol, 1973, 90(2):167-169.
[12] Kaiser J P, Feng Y, Bollag J M. Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions. American Society for Microbiology, 1996, 60(3):483-498.
[13] Pearson W R, Lipman D J. Improved tools for biological sequence comparison. Proceedings of the National Academy of Science of the United States of America, 1988, 85(8):2444-2448.
[14] Gabriel J P, Saucy F, Bersier L F. Paradoxes in the logisitic equation. Ecological Modelling, 2005, 185(1):147-151.
[15] 宋健, 林建群, 金燕, 等. 以比生长速率时间曲线为基础的生物群体生长数学模型. 微生物学通报, 2007, 34(5):836-838. Song J, Lin J Q, Jin Y, et al. A new population growth model based on the time dependent changes of the specific growth rate. Microbiology China, 2007, 34(5):836-838.
[16] Gasparaviciute R, Kropa A, Meskys R. A new Arthrobacter strain utilizing 4-hydroxypyridine. Biologija, 2006, 4:41-45.
[1] 崔自红,季秀玲. 细菌-噬菌体对抗性共进化研究进展 *[J]. 中国生物工程杂志, 2020, 40(1-2): 140-145.
[2] 阚婷婷,宗迅成,苏永君,王婷婷,李闯,胡蝶,邬敏辰. 定点突变改善PvEH1对邻甲基苯基缩水甘油醚的催化特性 *[J]. 中国生物工程杂志, 2019, 39(6): 9-16.
[3] 孟浩毅,李丹阳,孙正阳,杨兆勇,张志斐,袁丽杰. 人类线粒体肌酸激酶uMtCK的底物结合位点分析 *[J]. 中国生物工程杂志, 2018, 38(5): 24-32.
[4] 郭晓青, 王秀娟, 孙爱丽, 李德祥, 史西志. 环境中拟除虫菊酯类农药微生物降解技术研究进展[J]. 中国生物工程杂志, 2017, 37(5): 126-132.
[5] 王景胜, 王秋峰, 李勇, 刘燕, 张先楚, 李波, 董青山, 刘钺. Logistic模型在不同还原糖初始浓度乙醇发酵中的应用[J]. 中国生物工程杂志, 2017, 37(10): 81-85.
[6] 朱云鹏, 王鹏, 夏博然, 唐延婷, 王权. SARS冠状病毒主蛋白酶抑制剂的筛选及抑制动力学研究[J]. 中国生物工程杂志, 2016, 36(4): 35-42.
[7] 李鹏鹏, 于浩, 许平, 唐鸿志. 6-羟基-3-琥珀酰吡啶单加氧酶HspB的结构研究[J]. 中国生物工程杂志, 2015, 35(8): 68-75.
[8] 杨凡, 黄虎, 李屹晨, 邓衡露, 吴茂柏, 钟翎, 侯永敏. 新型长效重组促卵泡素的纯化和性质及药代动力学研究[J]. 中国生物工程杂志, 2014, 34(2): 45-51.
[9] 陈晨, 邰超, 李霜. 米根霉发酵产富马酸的最适替代中和剂及pH调控策略研究[J]. 中国生物工程杂志, 2013, 33(4): 85-91.
[10] 王振伟, 李刚锐, 李琳俐, 王帅坤, 孟延发. 兔肌3-磷酸甘油脱氢酶的提纯及性质研究[J]. 中国生物工程杂志, 2013, 33(2): 70-76.
[11] 王宗瑞, 赵广荣. 苯甘氨酸氨基转移酶基因hpgt的原核优化表达与酶动力学特性研究[J]. 中国生物工程杂志, 2012, 32(05): 51-57.
[12] 何红秋, 刘斌, 陈慰祖, 王存新. 分子信标方法研究HIV-1整合酶3'加工反应动力学[J]. 中国生物工程杂志, 2012, 32(02): 76-81.
[13] 孙娇梦, 许传营, 张忠辉, 王婧, 俞雁, 韩伟. 重组人中期因子midkine对大鼠膝关节软骨部分损伤的修复作用[J]. 中国生物工程杂志, 2010, 30(11): 1-5.
[14] 谢涛,方慧英,诸葛斌,诸葛健. 溶氧对Candida glycerinogenes产甘油发酵过程的影响[J]. 中国生物工程杂志, 2008, 28(5): 65-70.
[15] 牛晓霞,周敏毅,刘金毅,孙超,钟茜,吴晓东. 聚乙二醇定点修饰集成干扰素突变体Ⅱ[J]. 中国生物工程杂志, 2008, 28(4): 17-20.