Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (7): 18-26    DOI: 10.13523/j.cb.20170706
研究报告     
细菌性腹泻三联口服疫苗的研制及其免疫效果的初步评价
刘地1, 晏婷1, 何秀娟2, 郑文云2, 马兴元1
1. 华东理工大学生物工程学院 生物反应器工程国家重点实验室 上海 200237;
2. 华东理工大学药学院 上海市新药设计重点实验室 上海 200237
Preparation and Preliminary Evaluation of Triple Oral Vaccine Against Bacterial Diarrhea
LIU Di1, YAN Ting1, HE Xiu-juan2, ZHENG Wen-yun2, MA Xing-yuan1
1. School of Biotechnology and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China;
2. School of Pharmacy, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
 全文: PDF(1326 KB)   HTML
摘要: 由细菌引起的感染性腹泻,至今仍是世界范围广泛流行的传染病之一。由于耐抗生素病原菌的不断涌现,导致了抗生素药物的治疗效果不佳。因此,研发便捷、有效的疫苗对于细菌性腹泻的预防与治疗尤为重要。针对产肠毒素大肠杆菌、霍乱弧菌与志贺氏痢疾菌这三种最为主要的细菌性腹泻病原菌,设计和筛选了以热不稳定肠毒素亚基蛋白为抗原和黏膜佐剂、霍乱弧菌鞭毛蛋白及志贺毒素亚基蛋白为抗原的三联疫苗。通过工程大肠杆菌获得了相应的抗原与佐剂蛋白,并以海藻酸钙-壳聚糖微球为疫苗的口服载体,制备了疫苗的口服制剂。体外实验表明,微球载体中的蛋白质在模拟胃液中释放较低,但在模拟肠液中释放迅速,这种载体能够实现疫苗在肠道内定向释放的目的。通过对灌胃免疫后小鼠免疫指标的检测,证明了疫苗能够刺激机体产生抗原特异性的sIgA与IgG抗体,免疫组与对照组相比,差异显著(P<0.05),并提升了外周血中CD4+T细胞的含量(7.5%~9.5%)与CD4+T/CD8+T细胞的比率,有效地激活了机体的黏膜免疫与系统免疫,能够对机体起到保护作用。
关键词: 细菌性腹泻黏膜免疫三联口服疫苗    
Abstract: Infectious diarrhea disease caused by bacterial pathogens is still one of the most common infectious diseases throughout the world. Due to the emergence of antibiotic resistant bacteria, the treatment effects of antibiotic drugs are not very well. Therefore, it is very important to develop convenient and effective vaccines for the prevention and treatment of bacterial diarrhea. Aimed at enterotoxigenic Escherichia coli (ETEC), Vibrio cholerae and Shigella flexneri, the three major types of pathogenic bacteria, the triple-vaccine based on the heat-labile enterotoxin subunit proteins as antigens and mucosal adjuvants, Vibrio cholerae flagellin protein and Shiga toxin subunit protein as antigens was designed. The corresponding antigens and adjuvant proteins were obtained from engineered Escherichia coli, the alginate-chitosan microspheres were used as oral delivery, and the oral vaccine formulations were prepared. In vitro experiment indicate that the release of protein is very slow in simulated gastric fluid, but prompt and almost complete in simulated intestinal fluid, which suggests that microsphere carrier can achieve the purpose of the intestinal targeted release of vaccine. After immunizing mice, immune indexes were detected, and the results proved that the vaccine stimulated the production of the antigen-specific sIgA and IgG antibody, with significant difference (P<0.05) compared with the control group, and improved the content of CD4+T cells (7.5%~9.5%) and the ratio of CD4+T/CD8+T cells in peripheral blood. As a result, the vaccine induced mucosal and systemic immune responses and could effectively protect the body after immunization.
Key words: Bacterial diarrhea    Mucosal immunity    Triple oral vaccine
收稿日期: 2017-04-21 出版日期: 2017-07-25
ZTFLH:  Q815  
通讯作者: 马兴元     E-mail: xymy@ecust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
晏婷
何秀娟
刘地
郑文云
马兴元

引用本文:

刘地, 晏婷, 何秀娟, 郑文云, 马兴元. 细菌性腹泻三联口服疫苗的研制及其免疫效果的初步评价[J]. 中国生物工程杂志, 2017, 37(7): 18-26.

LIU Di, YAN Ting, HE Xiu-juan, ZHENG Wen-yun, MA Xing-yuan. Preparation and Preliminary Evaluation of Triple Oral Vaccine Against Bacterial Diarrhea. China Biotechnology, 2017, 37(7): 18-26.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170706        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I7/18

[1] Sanchez J,Holmgren J. Virulence factors, pathogenesis and vaccine protection in cholera and ETEC diarrhea. Current Opinion in Immunology, 2005, 17(4): 388-398.
[2] Liu L, Johnson H L, Cousens S, et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet, 2012, 379(9832): 2151-2161.
[3] Zaidi D,Wine E. An update on travelers’ diarrhea. Curr Opin Gastroenterol, 2015, 31(1): 7-13.
[4] Das J K, Tripathi A, Ali A, et al. Vaccines for the prevention of diarrhea due to cholera, shigella, ETEC and rotavirus. BMC Public Health, 2013, 13(Suppl 3): S11.
[5] Wenneras C,Erling V. Prevalence of enterotoxigenic Escherichia coli-associated diarrhoea and carrier state in the developing world. J Health Popul Nutr, 2004, 22(4): 370-382.
[6] Svennerholm A M,Steele D. Microbial-gut interactions in health and disease. Progress in enteric vaccine development. Best Pract Res Clin Gastroenterol, 2004, 18(2): 421-445.
[7] Peirano G, Souza F S,Rodrigues D P. Frequency of serovars and antimicrobial resistance in Shigella spp. from Brazil. Memorias do Instituto Oswaldo Cruz, 2006, 101(3): 245-250.
[8] Das J K, Ali A, Salam R A, et al. Antibiotics for the treatment of Cholera, Shigella and Cryptosporidium in children. BMC Public Health, 2013, 13(Suppl 3): S10.
[9] Ogra P L, Faden H,Welliver R C. Vaccination strategies for mucosal immune responses. Clinical Microbiology Reviews, 2001, 14(2): 430-445.
[10] Hoebe K, Janssen E,Beutler B. The interface between innate and adaptive immunity. Nature Immunology, 2004, 5(10): 971-974.
[11] da Hora V P, Conceicao F R, Dellagostin O A, et al. Non-toxic derivatives of LT as potent adjuvants. Vaccine, 2011, 29(8): 1538-1544.
[12] Rappuoli R, Pizza M, Douce G, et al. Structure and mucosal adjuvanticity of cholera and Escherichia coli heat-labile enterotoxins. Immunology Today, 1999, 20(11): 493-500.
[13] Melton-Celsa A R. Shiga toxin (Stx) classification, structure, and function. Microbiol Spectr, 2014, 2(4): Ehec-0024-2013.
[14] Klose K E,Mekalanos J J. Differential regulation of multiple flagellins in Vibrio cholerae. Journal of Bacteriology, 1998, 180(2): 303-316.
[1] 翟君叶,成旭,孙泽敏,李春,吕波. 毛蕊花糖苷的生物合成研究进展[J]. 中国生物工程杂志, 2021, 41(5): 94-104.
[2] 栗波,王泽建,梁剑光,刘爱军,李海东. 等离子体作用结合氧限制模型选育利福霉素SV高产菌株 *[J]. 中国生物工程杂志, 2021, 41(2/3): 38-44.
[3] 周惠颖,周翠霞,张婷,王雪雨,张会图,冀颐之,路福平. 强化底物利用酶系表达,提升地衣芽孢杆菌生产碱性蛋白酶性能[J]. 中国生物工程杂志, 2021, 41(2/3): 53-62.
[4] 王优蓓,郭思妤,常碧博,叶蕊芳,花强. 螺旋链霉菌遗传操作系统-接合转移体系的建立[J]. 中国生物工程杂志, 2021, 41(2/3): 45-52.
[5] 朱亚鑫, 段艳婷, 高宇豪, 王籍阅, 张晓梅, 张晓娟, 徐国强, 史劲松, 许正宏. 不同D/L单体比γ-聚谷氨酸的合成与调控[J]. 中国生物工程杂志, 2021, 41(1): 1-11.
[6] 王震,李霞,元英进. 微生物异源合成咖啡酸及其酯类衍生物研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 91-99.
[7] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[8] 梅雨薇,杨子云,于樊,龙旭伟. 生物表面活性剂脂肽的发酵生产及抑菌应用研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 105-116.
[9] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[10] 王泽建,栗波,王萍,张琴,杭海峰,梁剑光,庄英萍. 葡萄糖和麦芽糖碳源底物对粪产碱杆菌合成凝胶多糖的胞内代谢流影响*[J]. 中国生物工程杂志, 2020, 40(5): 30-39.
[11] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[12] 秦旭颖,杨洪江. 噬菌体分离纯化技术研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 78-83.
[13] 王蒙,张全,高慧鹏,关浩,曹长海. 生物发酵法制备木糖醇的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 144-153.
[14] 崔自红,季秀玲. 细菌-噬菌体对抗性共进化研究进展 *[J]. 中国生物工程杂志, 2020, 40(1-2): 140-145.
[15] 陈子晗,周海胜,尹新坚,吴坚平,杨立荣. Amphibacillus xylanus谷氨酸脱氢酶基因工程菌培养条件优化 *[J]. 中国生物工程杂志, 2019, 39(10): 58-66.