Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (7): 104-111    DOI: 10.13523/j.cb.20160714
综述     
治疗性抗体药物开发中IgG亚型选择
吕若芸, 陈忱, 魏敬双
华北制药集团新药研究开发有限责任公司 抗体药物研制国家重点实验室 石家庄 050015
Subclasses Selection in Therapeutic Antibody Development
LV Ruo-yun, CHEN Chen, WEI Jing-shuang
NCPC New Drug Research and Development Co. Ltd., State Key Laboratory of Antibody Research & Development, Shijiazhuang 050015, China
 全文: PDF(417 KB)   HTML
摘要:

治疗性抗体药物针对不同的适应证具有专一性和有效性。目前已上市的治疗性抗体药物多是以IgG为框架开发的,并且绝大部分属于IgG1亚型。在治疗性抗体药物的开发中,由于各亚型具有不同的结构与功能,影响其理化性质、生物活性和触发效应功能的能力等,为达到期望的治疗效果并且避免不良反应,应选择适宜的抗体亚型进行抗体设计。主要综述了影响IgG亚型选择的相关因素,以及IgG1、IgG2和IgG4亚型在治疗性抗体药物开发中的应用研究,以期为治疗性抗体药物研发提供新思路。

关键词: 亚型选择亚型治疗性抗体    
Abstract:

Therapeutic antibody drugs with specificity and efficiency have been developed for different indications.The therapeutic antibody drugs have frameworks from IgG, most of which belong to the IgG1 isotype. Due to various subclasses with different structure and function, affect the physical and chemical properties, biological activity and the ability to trigger effector function and so on, in the process of the research and development of therapeutic antibody drugs, it is important to choose the suitable antibody subclass in design to achieve the desired effect and reduce side effects. The curative related effect of choosing IgG subclass and the development of selecting of IgG subclass for the research and application were reviewed, in order to provide new ideas for therapeutic antibody drugs development.

Key words: Therapeutic antibody    Subclass selection    Subclasses
收稿日期: 2016-04-18 出版日期: 2016-07-25
ZTFLH:  Q819  
基金资助:

“重大新药创制”国家科技重大专项创新型人源单抗药物研制平台及重大品种开发(2014ZX09201041)资助项目

通讯作者: 魏敬双     E-mail: weijsh@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

吕若芸, 陈忱, 魏敬双. 治疗性抗体药物开发中IgG亚型选择[J]. 中国生物工程杂志, 2016, 36(7): 104-111.

LV Ruo-yun, CHEN Chen, WEI Jing-shuang. Subclasses Selection in Therapeutic Antibody Development. China Biotechnology, 2016, 36(7): 104-111.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160714        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I7/104

[1] Ramsland P A,Hutchinson A T,Carter P J.Therapeutic antibodies:Discovery,design and deployment.Mol Immunol,2015,67(2 Pt A):1-3.
[2] Janice M.Antibodies to watch in 2016.MAbs,2016,8(2):197-204.
[3] Ito T,Tsumoto K.Effects of subclass change on the structural stability of chimeric,humanized,and human antibodies under thermal stress.Protein Sci,2013,22(11):1542-1551.
[4] Salfeld J G.Isotype selection in antibody engineering.Nat Biotechnol,2007,25(12):1369-1372.
[5] Jefferis R.Antibody therapeutics:isotype and glycoform selection.Expert Opin.Biol,2007,7(9):1401-1413.
[6] Irani V,Guy A J,Andrew D,et al.Molecular properties of human IgG subclasses and their implicationsfor designing therapeutic monoclonal antibodies against infectious diseases.Mol Immunol,2015,67(2 Pt A):171-182.
[7] Vidarsson G,Dekkers G,Rispens T.IgG subclasses and allotypes:from structure to effector functions.Front Immunol,2014,5(520):1-17.
[8] Liu H,May K.Disulfide bond structures of IgG molecules.MAbs,2012,4(1):17-23.
[9] Tian X S,Langkiled A E,Thorolfsson M.Small-angle X-ray scattering screening complements conventional biophysical analysis:comparative structural and biophysical analysis of monoclonal antibodies IgG1,IgG2,and IgG4.Journal of Pharmaceutical Sciences,2014,103(6):1701-1710.
[10] Pepinsky R B,Silvian L,Berkowitz S A,et al.Improving the solubility of anti-LINGO-1 monoclonal antibody Li33 by isotype switching and targeted mutagenesis.Protein Sci,2010,19(5):954-966.
[11] Thakkar S V,Sahni N,Joshi S B,et al.Understanding the relevance of local conformational stability and dynamics to the aggregation propensity of an IgG1 and IgG2 monoclonal antibodies.Protein Sci,2013,22(10):1295-1305.
[12] Beenhouwer D O,Yoo E M,Lai C W,et al.Human immunoglobulin G2(IgG2) and IgG4,but Not IgG1 or IgG3,Protect mice against cryptococcus neoformans infection.Infect Immun,2007,5(3):1424-1435.
[13] Varshney A K,Wang X,Aguilar J L,et al.Isotype switching increases efficacy of antibody protection against staphylococcal enterotoxin B-induced lethal shock and Staphylococcus aureus sepsis in mice.MBio,2014,5(3):e01007-e01014.
[14] Lee J H,Yeo J,Park H S,et al.Biochemical characterization of a new recombinant TNF receptor-hyFc fusion protein expressed in CHO cells.Protein Expr Purif,2013,87(1):17-26.
[15] K nitzer J D,Sieron A,Wacker A,et al.Reformatting rituximab into human IgG2 and IgG4 isotypes dramatically improves apoptosis induction in vitro.PLoS One,2015,10(12):e0145633.
[16] Correia I R.Stability of IgG isotypes in serum.MAbs,2010,2(3):221-232.
[17] Stapleton N M,Andersen J T,Stemerding A M,et al.Competition for FcRn-mediated transport gives rise to short half-life of human IgG3 and offers therapeutic potential.Nature Communications,2011,2:599-608.
[18] Rispens T,Davies A M,Ooijevaar-de Heer P,et al.Dynamics of inter-heavy chain interactions in human immunoglobulin G (IgG) subclasses studied by kinetic Fab arm exchange.J Biol Chem,2014,289(9):6098-6109.
[19] Labrijn A F,Meesters J I,Priem P,et al.Controlled Fab-arm exchange for the generation of stable bispecific IgG1.Nat Protoc,2014,9(10):2450-2463.
[20] Labrijna A F,Meestersa J I,Bart E C G,et al.Efficient generation of stable bispecific IgG1 by controlled Fab-arm exchange.PNAS,2013,110(13):5145-5150.
[21] Gramer M J,van den Bremer E T,van Kampen M D,et al.Production of stable bispecific IgG1 by controlled Fab-arm exchange.MAbs,2013,5(6):962-973.
[22] Tishchenko V M.Correlation between macro-and micro-stability C (H)2 domains of human IGG2 and their biological activity.1.Ansalysis the calorimetric and optical melting curves.Mol Biol (Mosk),2014,48(3):480-490.
[23] Tishchenko V M.Correlation between macro-and micro-stability C (H)2 domains of human IgG2 and their biological activity.Ⅱ.Calculation of thermodynamic functions characterizing domains stability.Mol Biol (Mosk),2014,48(5):842-849.
[24] Aboel Dahab A,El-Hag D.Effective protocol for the investigation of physicochemical and conformational stability and aggregation kinetics measurements of therapeutic IgG2 monoclonal antibody.J Immunol Methods,2014,405:154-166.
[25] Sahin E,Weiss W F 4th,Kroetsch A M,et al.Aggregation and pH-temperature phase behavior for aggregates of an IgG2 antibody.J Pharm Sci,2012,101(5):1678-1687.
[26] White A L,Chan H T C,French R R,et al.Conformation of the human immunoglobulin G2 hinge imparts superagonistic properties to immunostimulatory anticancer antibodies.Cancer Cell,2015,27(1):138-148.
[27] Rispens T,Leeuwen A V,Vennegoor A,et al.Measurement of serum levels of natalizumab,an immunoglobulin G4 therapeutic monoclonal antibody.Anal Biochem,2011,411(2):271-276.
[28] Labrijn A F,Rispens T,Meesters J,et al.Species-specific determinants in the IgG CH3 domain enable Fab-arm exchange by affecting the noncovalent CH3-CH3 interaction strength.J Immunol,2011,187(6):3238-3246.
[29] Labrijn A F,Buijsse A O,van den Bremer E T,et al.Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4in vivo.Nat Biotechnol,2009,27(8):767-771.
[30] Silva J P,Vetterlein O,Jose J,et al.The S228P mutation prevents in vivo and in vitro IgG4 Fab-arm exchange as demonstrated using a combination of novel quantitative immunoassays and physiological matrix preparation.J Biol Chem,2015,290(9):5462-5469.
[31] Davies A M,Rispens T,Ooijevaar-de Heer P,et al.Structural determinants of unique properties of human IgG4-Fc.Mol Biol,2014,426(3):630-644.
[32] Rispens T,Ooijevaar-de Heer P,Bende O,et al.Mechanism of immunoglobulin G4 Fab-arm exchange.J Am Chem Soc,2011,133(26):10302-10311.
[33] Spiess C,Bevers J,Jackman J,et al.Development of a human IgG4 bispecific antibody for dual targeting of interleukin-4(IL-4) and interleukin-13(IL-13) cytokines.Biol Chem,2013,288(37):26583-26593.
[34] Korde N,Carlsten M,Lee M J,et al.A phase Ⅱ trial of pan-KIR2D blockade with IPH2101 in smoldering multiple myeloma.Haematologica,2014,99(6):81-83.

[1] 陈静, 康赐明, 罗文新. 治疗性抗体半衰期改造研究进展[J]. 中国生物工程杂志, 2017, 37(5): 87-96.
[2] 葛良鹏, 丁宁, 兰国成, 邹贤刚, 刘作华. 治疗性抗体的研究现状与未来[J]. 中国生物工程杂志, 2013, 33(9): 85-93.
[3] 王青 胡建和 徐彦召. 表达H5N1亚型禽流感病毒HA基因重组腺病毒的遗传稳定性分析及滴度测定[J]. 中国生物工程杂志, 2010, 30(09): 19-23.
[4] 石榴 蒋亚琴 白艳秋. 代谢型谷氨酸受体5亚型高通量筛选模型的建立[J]. 中国生物工程杂志, 2010, 30(05): 81-86.
[5] 刘春国 刘明 李洪涛 杜金玲 张新涛 石薇霖. H1亚型猪流感病毒HA基因DNA疫苗的构建及其对Balb/c小鼠的免疫效果评价[J]. 中国生物工程杂志, 2009, 29(10): 38-43.
[6] 高燕,孙明,蒋国润,张银川,王玺,李冰香,陈丹,黄小琴,周东霞,褚嘉祐. HIV-1 C/B'亚型多价重组MVA病毒疫苗[J]. 中国生物工程杂志, 2008, 28(2): 10-15.
[7] 包红梅,王秀荣,刘丽玲,王昱,李一经,陈化兰. H5亚型禽流感病毒一步法RT-PCR检测方法的建立[J]. 中国生物工程杂志, 2007, 27(5): 65-69.
[8] 刘华雷, 何海蓉, 周斌, 魏建超, 陈溥言. 禽流感病毒A/Chicken/Jiangsu/JS-1/2002(H9N2)分子鉴定与起源分析[J]. 中国生物工程杂志, 2005, 25(S1): 273-277.
[9] 胡显文, 陈惠鹏, 汤仲明, 马清钧. 生物制药的现状和未来(一):历史与现实市场[J]. 中国生物工程杂志, 2004, 24(12): 94-100.
[10] E.Beck, G.Feil, K.Strohmaier, 谷丽雅, 孙林, 赵晜. 口蹄疫病毒抗原变异性的分子基础[J]. 中国生物工程杂志, 1984, 4(2): 35-41.