Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (4): 78-87    DOI: 10.13523/j.cb.20160412
研究报告     
细粒棘球蚴EgG1Y162基因进化分析、表达及鉴定
祖力皮也·吐尔逊1, 曹春宝1, 温浩1, 丁剑冰2, 德力夏提·依米提1,2
1. 新疆重大疾病医学实验室-省部共建国家重点实验室培育基地 新疆医科大学第一附属医院 乌鲁木齐 830054;
2. 新疆医科大学科研处 乌鲁木齐 830011
Analysis of Gene Evolution, Protein Expression and Identification of Echinococcus granulosus EgG1Y162
TUERXUN Zulipiye1, CAO Chun-bao1, WEN Hao1, DING Jian-bing2, YIMITI Delixiati1,2
1. Base to Foster a State Key Lab for Major Disease Research in Xinjiang , The First Affiliated Hospital of Xinjiang Medical University, Urumuchi 830054, China;
2. College of Preclinical Medicine, Xinjiang Medical University, Urumuchi 830011, China
 全文: PDF(2303 KB)   HTML
摘要:

目的:克隆和鉴定细粒棘球蚴的EgG1Y162基因,分析其蛋白表达和适应性进化并鉴定抗原性。方法: 根据emY162基因序列设计引物,分别从细粒棘球绦虫原头蚴、囊壁生发层、成虫和虫卵四个发育阶段,提取基因组DNA和总RNA,mRNA反转录为cDNA,利用PCR的方法以基因组DNA和cDNA为模板扩增EgG1Y162基因;构建PUCm-T/EgG1Y162重组质粒,经PCR、酶切及测序鉴定后,测序确定其正确性。利用DNAman软件与MEGA4软件对EgG1Y162基因特点进行分析并构建EgG1Y162核酸序列的进化树进一步探讨其同源性。荧光定量PCR检测EgG1Y162 基因在细粒棘球绦虫原头蚴、囊壁生发层、成虫和虫卵四个不同发育阶段的表达情况。利用定向克隆技术将EgG1Y162抗原基因片段克隆至原核表达质粒PET-41a上,通过酶切分析和PCR 鉴定筛选出阳性克隆,测序确定序列。IPTG初步诱导和表达EgG1Y162-GST 重组蛋白,通过SDS-PAGE电泳和Western blot试验分析鉴定。 结果: 从细粒棘球绦虫的两个不同发育阶段均克隆出EgG1Y162基因,从总DNA克隆得到片段长度1 680bp,从cDNA克隆得到片段长度459bp。相似性比较表明,EgG1Y162基因序列与emY162相似性为91%,而EgG1Y162基因cDNA与emY162相似性为95%。进一步分析显示,EgG1Y162基因序列由3个外显子和2个内含子组成,外显子区域分别为1~70,1 064~1 380和1 577~1 648。位于疏水端1~16位氨基酸构成EgG1Y162信号肽序列,35~115位氨基酸形成一个大的纤黏连蛋白剪接体FN3,133~152位氨基酸构成羧基端跨膜区域。测序结果显示EgG1Y162抗原基因长度为360bp,编码120个氨基酸。通过荧光定量PCR检测,发现EgG1Y162在成虫、生发层阶段、原头蚴和虫卵阶段均有不同程度的表达。但是EgG1Y162在成虫中的表达量最多,相对值为19.526,差异有统计学意义(P<0.01),其次生发层阶段,为5.122,再次在原头蚴阶段,相对值为5.083,而在虫卵阶段最少,为1.6588。构建的PET-41a/EgG1Y162原核表达质粒,经IPTG诱导后,SDS-PAGE 检测表明EgG1Y162-GST重组蛋白得到成功表达,在相对分子量为44kDa 处有表达条带。Western blot 分析显示阳性印迹条带,分子量为44kDa,EgG1Y162重组蛋白能与细粒棘球蚴感染40天后犬的血清发生反应;与包虫病患者血清也有阳性反应。结论: 成功克隆EgG1Y162抗原基因,序列对比分析显示EgG1Y162的cDNA与emY162的cDNA具有很高的相似性,基因的差异性主要存在于内含子区域,EgG1Y162抗原基因是一种新的基因。EgG1Y162在成虫中的表达量最多。成功诱导表达出EgG1Y162重组蛋白,并且EgG1Y162重组蛋白具有很好的抗原性。

关键词: 原核表达EgG1Y162抗原进化树荧光定量PCR    
Abstract:

Objective: To clone and identify Echinococcus granulosus egG1Y162 gene and analysis the protein expression, adaptive evolution and identification.of antigenicity. Methods: According to the gene sequence of emy162 , a pair of primers was designed from Echinococcus granulosus protoscolices, cystic wall students send layer, adults and eggs of four developmental stage respectively , extract the genomic DNA and total RNA, mRNA was reverse transcribed into cDNA,amplified egG1Y162 gene via PCR with genomic DNA and cDNA . Construct the recombinant plasmid of PUCm-T/EgG1Y162 and identified by PCR, enzyme digestion and sequencing to determine its correctness. The characteristics of EgG1Y162 gene were analyzed by DNAman software and MEGA4 software, and construct the phylogenetic tree of EgG1Y162 nucleic acid to further explore its homology. Fluorescence quantitative PCR detection egG1Y162 gene at four different developmental stages including Echinococcus granulosus protoscolices, cystic wall students expression layer, adults and eggs. The EgG1Y162 gene was cloned into prokaryotic expression plasmid PET-41a by using the directed cloning technology, and the positive clones were identified by the restriction analysis and PCR identification, and the sequence was determined by sequencing. IPTG was initially induced and expressed by EgG1Y162-GST recombinant proteins and identified by SDS-PAGE and Western blot assay. Results: EgG1Y162 gene were cloned from both two different developmental stages of Echinococcus granulosus, from total DNA clone obtained length for 1 680bp fragment , from a cDNA clone obtained length for 459bp fragment .The similarity of the EgG1Y162 gene was 91%, while the similarity of emY162 gene cDNA and EgG1Y162 was 95%. Further analysis showed that the sequence of EgG1Y162 gene was composed of 3 exons and 2 introns, the exon regions were 1~70,1064~1380and 1577~1648. The amino acids of 1~16 amino acids in the hydrophobic side constitute the EgG1Y162 signal peptide sequence, and 35~115 amino acids form a large fibronectin splicing FN3133~152 amino acids which constitute the carboxyl terminal transmembrane region. The result of DNA sequencing showed that the length of EgG1Y162 gene was 360bp and 120 amino acids were encoded.. By fluorescence quantitative PCR detection found egG1Y162 in adults, germinal layer, protoscolex and the egg stage had different degrees of expression. But the majority egG1Y162 expression in the adult stage, at most a relative value is 19.526 difference was statistically significant (P< 0.01), secondly germinal layer, 5.122, again in protoscolex stage, relative value 5.083, in the egg stage at least for 1.6588. The prokaryotic expression plasmid of PET-41a/EgG1Y162 was induced by SDS-PAGE, and the IPTG assay showed that the recombinant protein of EgG1Y162-GST was successfully expressed and expressed in the relative molecular weight of 44KDa. Western blot analysis showed positive blot bands, the molecular weight of 44kda, egG1Y162 recombinant protein can with Echinococcus granulosus infection after 40 days of canine sera react; serum from patients with hydatid disease also have positive reaction. Conclusion: Successfully cloned egG1Y162 antigen gene, sequence comparison analysis showed high similarity with cDNA of the egG1Y162 cDNA and emy162, differences in gene mainly exists in the intron region, the egG1Y162 antigen gene is a new gene. The expression of EgG1Y162 in adult was the most. The recombinant protein was successfully induced, and the recombinant protein of EgG1Y162 has significant antigenicity.

Key words: EgG1Y162 antigen    Phylogenetic tree    Fluorescence quantitative PCR    Prokaryotic expression
收稿日期: 2015-09-16 出版日期: 2016-01-06
ZTFLH:  Q819  
基金资助:

国家自然科学基金(31000411,81160378)资助项目

通讯作者: 丁剑冰     E-mail: susan8s8@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
祖力皮也·吐尔逊
刘献飞
杨益
丁剑冰
德力夏提·依米提

引用本文:

祖力皮也·吐尔逊, 曹春宝, 温浩, 丁剑冰, 德力夏提·依米提. 细粒棘球蚴EgG1Y162基因进化分析、表达及鉴定[J]. 中国生物工程杂志, 2016, 36(4): 78-87.

TUERXUN Zulipiye, CAO Chun-bao, WEN Hao, DING Jian-bing, YIMITI Delixiati. Analysis of Gene Evolution, Protein Expression and Identification of Echinococcus granulosus EgG1Y162. China Biotechnology, 2016, 36(4): 78-87.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160412        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I4/78

[1] Johannes E, Peter D. Biological, epidemiological and clinical aspects of Echinococcosis, a zoonosis of increasing concern.Clinical Microbiology Reviews, 2007,17(1):107-135.
[2] Wu J H. Border areas hydatid disease causes and prevention of epidemic response. Medical Information, 2007,20(4):682-683.
[3] Jiang C P. Current epidemic status of Echinococcosis in chin . Endemic Diseases Bulletin,2002,17(3):77-79.
[4] Wen H, Xu M. Practical Echinococcosis. Beijing: Science Publishing House, 2007. 1-19.
[5] Katoh Y, Kouguchi H, Matsumoto J,et al. Characterization of emY162 encoding an immunogenic protein cloned from an adult worm-specific cDNA library of Echinococcus multilocularis. Biochim Biophys Acta,2007,1780(1):1-6.
[6] Katoh Y, Kouguchi H, Matsumoto J, et al. The vaccination potential of EMY162 antigen against Echinococcus multilocularis infection. Biochim Biophys Acta, 2007,363(4): 915-920.
[7] Zeng S H, Wang S P,Zhang J X, et al. Analyzing the structures and function of SJCWL06 encoding protein of Schistosoma japonicum by bioinformatics.Int J Med Parasit Dis, 2006,33(1):10-14.
[8] Zhang W B,Li J, MeManus D P, et al. Concepts in immunology and diagnosis of hydatid disease. Clinieal Mierobiology Review,2003,16(l):18-36.
[9] Eekert J, Sehantz P,Gasser R, et al.Geographic Distribution and Prevalenee. In:Eekert J,Gemmell M A,Meslin F X, ed.WHOI/OIE Manual on Eehinoeoceosis in Humans and Animals:a Public health problem of global concern.Paris:World Organization for Animal Health,2001.100-141.
[10] Eekerta J, Conrathsb F,Taekmannb K, et al. Eehinocoeeosis: an emerging or reemerging zoonosis?International Journal for Parasitology, 2000, 30 (13): 1283- 1294.
[11] Heath, D D. The use of a Recombinant Antigen to Immunize Sheep against Echinococcus granulosus, Proceedings of the International Congress of Hydatidology. Beijing, 1993,10- 13.
[12] Lightowlers M W. Vaccination against cestode parasites. Int J Parasitol, 1996, 26 (8/9):819-824.
[13] Lightowlers M W, Jensen O, Fernandez E, et al. Vaccination trials in Australia and Argentina confirm the effectiveness of the Eg95 hydatid vaccine in sheep. Int J Parasitol,1999,29(4):531-534.
[14] Akira I, Yasuhito S, Hiroshi Y, et al. Development of Em18-immunoblot and Em18-ELISA for specific diagnosis of alveolar Echinococcosis.Acta Tropica,2003,8 (5): 173-182.
[15] Gabriela A,Santiago M,Di P, et al. Binding properties of Echinococcus granulosus fatty acid binding protein. Biochimica et Biophysica, 2001,15(33): 293-302.
[16] 曹春宝,丁剑冰.棘球蚴感染中的免疫逃避相关分子.中国病原生物学杂志,2008,3(10):791-792. Cao C B, Ding J B. Molecules related with immune escape in echinococcosis.Journal of Pathogen Biology,2008,3(10):791-792.
[17] Li H Z, Graham R,Bernd H, et al. Cloning and expression of a cDNA encoding a nonintegrin laminin-binding protein from Echinococcus granulosus with localization of the laminin-binding domain. Molecular and Biochemical Parasitology,1997,8 (7) 183-192.
[18] Virginio V, Hernández A,Rott M,et al.A set of recombinant antigens from Echinococcus granulosus with potential for use in the immunodiagnosis of human cystic hydatid disease. Clin Exp Immunol,2003,13(9):309-315.
[19] Lightowler M, Gauci G, Chow C, et al. Molecular and genetic characterisation of the host-protective oncosphere antigens of taeniid cestode parasites. International Journal for Parasitology, 2003,3 (3): 1207-1217.
[20] Cecilia C,Ramiro M,Andrea R, et al. Production and characterization of monoclonal antibodies against excretory/secretory products of adult Echinococcus granulosus, and their application to coproantigen detection. Parasitology International, 2005,5 (4):43-49.

[1] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[2] 张磊,唐永凯,李红霞,李建林,徐逾鑫,李迎宾,俞菊华. 促进原核表达蛋白可溶性的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 138-149.
[3] 张潇航,李媛媛,贾敏晅,顾奇. 弹性蛋白样生物材料的制备及性质鉴定 *[J]. 中国生物工程杂志, 2020, 40(8): 33-40.
[4] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[5] 李彤彤,宋彩玲,杨凯越,王文静,陈慧宇,刘明. 抗犬细小病毒VP2蛋白单链抗体的制备与中和活性研究 *[J]. 中国生物工程杂志, 2020, 40(4): 10-16.
[6] 陈秋利,杨丽超,李辉,温莎,李刚,何敏. 人Nek2蛋白原核表达纯化及其多克隆抗体制备 *[J]. 中国生物工程杂志, 2020, 40(3): 31-37.
[7] 杨隆兵,国果,马慧玲,李妍,赵欣宇,苏佩佩,张勇. 家蝇抗菌肽AMPs17蛋白原核表达条件的优化及其抗真菌活性检测 *[J]. 中国生物工程杂志, 2019, 39(4): 24-31.
[8] 李明英,王仁军,张帆,迟彦. β2糖蛋白Ⅰ第五结构域及其突变体、短肽片段的原核表达及活性分析 *[J]. 中国生物工程杂志, 2018, 38(8): 1-9.
[9] 庄旻敏,贾晓会,施定基,朱嘉诚,冯思豫,何培民,贾睿. 转基因聚球藻7942中vp28基因表达效率及其光合特性分析[J]. 中国生物工程杂志, 2018, 38(4): 30-37.
[10] 陈远侨,龙定沛,豆晓雪,祁润,赵爱春. ELP30-tag蛋白纯化能力的原核表达研究[J]. 中国生物工程杂志, 2018, 38(2): 54-60.
[11] 何亚南,孙钰椋,任雅坤,梁盛英,杨芬,刘彦礼,林俊堂. 金黄色葡萄球菌类肠毒素K与GFP融合蛋白工程菌的构建及其表达蛋白生物学活性分析 *[J]. 中国生物工程杂志, 2018, 38(12): 14-20.
[12] 任建委,李军,李尚泽. 人源CT55蛋白原核表达及单克隆抗体的制备 *[J]. 中国生物工程杂志, 2018, 38(11): 1-8.
[13] 张进,斯丹,杨致邦,熊玉霞,马廉举,李津阳,蒋仁举. 地塞米松降解新基因的探讨[J]. 中国生物工程杂志, 2018, 38(1): 15-24.
[14] 孙文佳, 姚宇峰, 杨旭, 黄惟巍, 刘存宝, 龙琼, 褚晓杰, 马雁冰. 乙肝核心抗原病毒样颗粒呈现HPV 16L1抗原表位及特异抗体诱导[J]. 中国生物工程杂志, 2017, 37(3): 58-64.
[15] 张丽丽, 徐碧玉, 刘菊华, 贾彩红, 张建斌, 金志强. 转香蕉MaASR1基因的拟南芥株系在干旱胁迫条件下的表达谱分析[J]. 中国生物工程杂志, 2017, 37(11): 59-73.