Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (10): 91-99    DOI: 10.13523/j.cb.20151014
综述     
生物法制备平台化合物乙偶姻的最新研究进展
刘晓霏1,2,3, 付晶1,2,3, 霍广鑫1,2,3, 章博1,2,3, 王智文1,2,3, 陈涛1,2,3
1. 天津大学化工学院 天津 300072;
2. 系统生物工程教育部重点实验室 天津 300072;
3. 天津化学化工协同创新中心 天津 300072
Latest Advances of Microbial Production of Platform Chemical Acetoin
LIU Xiao-fei1,2,3, FU Jing1,2,3, HUO Guang-xin1,2,3, ZHANG Bo1,2,3, WANG Zhi-wen1,2,3, CHEN Tao1,2,3
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
2. Key Laboratory of Systems Bioengineering Ministry of Education, Tianjin University, Tianjin 300072, China;
3. SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(599 KB)   HTML
摘要:

乙偶姻(3-羟基-2-丁酮)作为一种应用广泛的食用香料和重要的平台化合物,具有广阔的工业应用前景。与传统的化学合成方法不同,高效、环保的乙偶姻生物制备方法,可以减轻资源和环境压力,促进我国低碳经济的发展。近来,生物法制备平台化学品乙偶姻取得了丰硕的研究成果。总结了最近几年国内外在该领域最新的研究热点及方向,简述了发酵法生产乙偶姻的优势菌株概况,重点综述了以糖类物质为底物生产乙偶姻的最新策略及研究成果、将微生物改造为生产手性乙偶姻的高效细胞炼制工厂以及将2,3-丁二醇或双乙酰作为发酵底物的研究趋势,并介绍了乙偶姻的分离纯化工艺。使用非致病性的安全菌株,高效率地利用廉价底物,并采用经济、简单、环保的分离纯化方式,从而生产具有高附加值的食品级或高手性纯度乙偶姻,是生物法制备乙偶姻产业化发展的可靠保障。

关键词: 代谢工程辅因子工程乙偶姻进化工程安全菌株    
Abstract:

Acetoin (3-hydroxy-2-butanone), widely used mainly in foods as an additive to enhance the flavor and in chemical synthesis as a platform chemical, has broad industrial application prospects. It is classified as one of the 30 platform chemicals that were given the priority to their development and utilization by the U.S. Department of Energy. Compared to traditional chemical synthetic methods, economical, environment-friendly and efficient microbial production of acetoin has significant impetus to the low-carbon economy development of China. Currently, many achievements have been made in the biosynthesis of acetoin. This state-of-the-art review summarized the focus of the researchers' attentions nowadays, briefly described the strains used for acetoin production (especially Class 1 microorganisms), reviewed the latest strategies combining metabolic engineering, evolutionary engineering, cofactor engineering and fermentation engineering for acetoin production, and introduced the technology improvement for recovering processing. These achievements in the last five years were classified and discussed with state-of-the-art views. At last, guidelines for future studies were also proposed. It is pointed out that future research should focus on improvement of strains for acetoin tolerance and developing metabolic engineered class I strains for chiral acetoin production with high yield and productivity. More attention should be paid for the improvement of separation and purification process to lower the cost of downstream processing.

Key words: Acetoin    Cofactor engineering    Class 1 organisms    Evolutionary engineering    Metabolic engineering
收稿日期: 2015-04-03 出版日期: 2015-10-25
ZTFLH:  Q815  
基金资助:

国家"973"计划(2012CB725203, 2011CBA00804)、国家自然科学基金(NSFC-21176182, NSFC-21390201, NSFC-21206112)、国家"863"计划(2012AA02A702, 2012AA022103)、天津自然科学基金(12JCYBJC12900)资助项目

通讯作者: 陈涛     E-mail: chentao@tju.edu
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘晓霏, 付晶, 霍广鑫, 章博, 王智文, 陈涛. 生物法制备平台化合物乙偶姻的最新研究进展[J]. 中国生物工程杂志, 2015, 35(10): 91-99.

LIU Xiao-fei, FU Jing, HUO Guang-xin, ZHANG Bo, WANG Zhi-wen, CHEN Tao. Latest Advances of Microbial Production of Platform Chemical Acetoin. China Biotechnology, 2015, 35(10): 91-99.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20151014        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I10/91

[1] Xiao Z J, Lu J R. Generation of acetoin and its derivatives in foods. J Agric Food Chem, 2014, 62(28): 6487-6497.
[2] Xiao Z J,Xu P. Acetoin metabolism in bacteria. Crit Rev Microbiol, 2007, 33(2): 127-140.
[3] Xiao Z J,Lu J R. Strategies for enhancing fermentative production of acetoin: a review. Biotechnol Adv, 2014, 32(2): 492-503.
[4] Sun J A, Zhang L Y, Rao B,et al. Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase. Bioresource Technol, 2012, 119: 94-98.
[5] Luo Q, Wu J, Wu M. Enhanced acetoin production by Bacillus amyloliquefaciens through improved acetoin tolerance. Process Biochemistry, 2014, 49(8): 1223-1230.
[6] Xu P, Xiao Z, Du Y,et al. Acetoin high-yield Bacillus pumilus strain. U.S.A.8,158,402, 2012-4-17.
[7] Sun J, Zhang L, Rao B,et al. Enhanced acetoin production by Serratia marcescens H32 using statistical optimization and a two-stage agitation speed control strategy. Biotechnol Bioproc E, 2012, 17(3): 598-605.
[8] Xu Q, Xie L, Li Y,et al. Metabolic engineering of Escherichia coli for efficient production of (3R)-acetoin. J Chem Technol Biot, 2015, 90(1): 93-100.
[9] Xu H, Jia S, Liu J. Production of acetoin by Bacillus subtilis TH-49. IEEE International Conference on Consumer Electronics, Commun, Network,2011:1524-1527.
[10] Zhang L, Chen S, Xie H,et al. Efficient acetoin production by optimization of medium components and oxygen supply control using a newly isolated Paenibacillus polymyxa CS107. J Chem Technol Biot, 2012, 87(11): 1551-1557.
[11] Zhang X, Zhang R, Yang T,et al. Mutation breeding of acetoin high producing Bacillus subtilis blocked in 2,3-butanediol dehydrogenase. World J Micro Biot, 2013, 29(10): 1783-1789.
[12] Zhang Y, Li S, Liu L,et al. Acetoin production enhanced by manipulating carbon flux in a newly isolated Bacillus amyloliquefaciens. Bioresource Technol, 2013, 130: 256-260.
[13] Liu Y, Zhang S, Yong Y C,et al. Efficient production of acetoin by the newly isolated Bacillus licheniformis strain MEL09. Process Biochem, 2011, 46(1): 390-394.
[14] Ji X J, Xia Z F, Fu N H,et al. Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumoniae. Biotechnol Biofuels, 2013, 6(1): 7.
[15] Li L X, Li K, Wang Y,et al. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars. Metab Eng, 2015, 28: 19-27.
[16] Li S, Xu N, Liu L,et al. Engineering of carboligase activity reaction in Candida glabrata for acetoin production. Metab Eng, 2014, 22: 32-39.
[17] Liu D, Chen Y, Ding F,et al. Simultaneous production of butanol and acetoin by metabolically engineered Clostridium acetobutylicum. Metab Eng, 2015, 27: 107-114.
[18] 马红武,刘会娟,朱年青,等. 代谢工程方法改造谷氨酸棒状杆菌生产乙偶姻. 天津大学学报(自然科学与工程技术版), 2014, 47(11): 967-972. Ma H W, Liu H J, Zhu N Q, et al. Metabolic engineering of Corynebacterium glutamicum for acetoin production.Journal of Tianjin University, 2014, 47: 967-972.
[19] Ji X J, Huang H, Ouyang P K. Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv, 2011, 29(3): 351-364.
[20] Li S, Gao X, Xu N,et al. Enhancement of acetoin production in Candida glabrata by in silico-aided metabolic engineering. Microb Cell Fact, 2014, 13(1): 55.
[21] Wang M, Fu J, Zhang X,et al. Metabolic engineering of Bacillus subtilis for enhanced production of acetoin. Biotechnol Lett, 2012, 34(10): 1877-1885.
[22] Gao S, Guo W, Shi L,et al. Characterization of acetoin production in a budC gene disrupted mutant of Serratia marcescens G12. J Ind Microbiol Biotechnol, 2014, 41(8): 1267-1274.
[23] Bai F, Dai L, Fan J,et al. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production. J Ind Microbiol Biotechnol, 2015,42(5):779-786.
[24] Yang T H, Rathnasingh C, Lee H J,et al. Identification of acetoin reductases involved in 2,3-butanediol pathway in Klebsiella oxytoca. J Biotechnol, 2014, 172: 59-66.
[25] Zhang X, Zhang R, Bao T,et al. The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Metab Eng, 2014, 23: 34-41.
[26] Li S, Xu N, Liu L,et al. Engineering of carboligase activity reaction in Candida glabrata for acetoin production. Metab Eng, 2013, 22: 32-39.
[27] Xu Q, Xie L, Li Y,et al. Metabolic engineering of Escherichia coli for efficient production of (3R)-acetoin. J Chem Technol Biot, 2015, 90(1): 93-100.
[28] 付晶,王萌,刘维喜,等. 生物法制备 2, 3-丁二醇的最新进展 化学进展, 2012, 24 (11): 2268-2276. Fu J, Wang M, Liu W X, et al. Latest advances of microbial production of 2,3-butanediol. Prog Chem, 2012, 24 (11): 2268-2276.
[29] Zhang L, Sun J, Hao Y, et al. Microbial production of 2,3-butanediol by a surfactant (serrawettin)-deficient mutant of Serratia marcescens H30. J Ind Microbiol Biotechnol, 2010, 37(8): 857-862.
[30] Yang S J, Dunman P M, Projan S J, et al. Characterization of the Staphylococcus aureus CidR regulon: elucidation of a novel role for acetoin metabolism in cell death and lysis. Mol Microbiol, 2006, 60(2): 458-468.
[31] Chen T, Liu W X, Fu J, et al. Engineering Bacillus subtilis for acetoin production from glucose and xylose mixtures. J Biotechnol, 2013, 168(4): 499-505.
[32] Zhang B, Li N, Wang Z, et al. Inverse metabolic engineering of Bacillus subtilis for xylose utilization based on adaptive evolution and whole-genome sequencing. Appl Microbiol Biotechnol, 2015, 99(2): 885-896.
[33] Zhang X, Bao T, Rao Z, et al. Two-stage pH control strategy based on the pH reference of acetoin reductase regulates acetoin and 2,3-butanediol distribution in Bacillus subtilis. PLoS One, 2014, 9(3): e91187.
[34] Xiao Z, Lv C, Gao C, et al. A novel whole-cell biocatalyst with NAD+ regeneration for production of chiral chemicals. PloS one, 2010, 5(1): e8860.
[35] Bao T, Zhang X, Rao Z, et al. Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2, 3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis. PloS One, 2014, 9(7): e102951.
[36] Liu Z, Qin J, Gao C, et al. Production of (2S,3S)-2,3-butanediol and (3S)-acetoin from glucose using resting cells of Klebsiella pneumonia and Bacillus subtilis. Bioresource Technol, 2011, 102(22): 10741-10744.
[37] Gao J, Xu Y Y, Li F W, et al. Production of S-acetoin from diacetyl by Escherichia coli transformant cells that express the diacetyl reductase gene of Paenibacillus polymyxa ZJ-9. Lett Appl Microbiol, 2013, 57(4): 274-81.
[38] 戴建英,刘春娇,孙亚琴,等. 盐析萃取生物基化学品的研究进展. 生物工程学报,2013, 29(10): 1441-1449. Dai J Y, Liu C J, Sun Y Q, et al. Research progress in salting-out extraction of bio-based chemicals.Chinese Journal of Biotechnology, 2013, 29(10): 1441-1449.
[39] Fan Y, Tian Y, Zhao X, et al. Isolation of acetoin-producing Bacillus strains from japanese traditional food—natto. Prep Biochem Biotech, 2013, 43(6): 551-564.
[40] Wu J, Ke X, Wang L, et al. Recovery of acetoin from the ethanol-acetoin-acetic acid ternary mixture based on adsorption methodology using a hyper-cross-linked resin. Ind Eng Chem Res, 2014, 53(31): 12411-12419.

[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[3] 李媛媛,李妍,曹英秀,宋浩. 黄素介导的胞外电子转移研究与工程改造*[J]. 中国生物工程杂志, 2021, 41(10): 89-99.
[4] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[5] 薛艳婷,吴胜波,徐程杨,袁博鑫,杨书鹃,刘家亨,乔建军,朱宏吉. 群体感应在动态代谢调控中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 74-83.
[6] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[7] 李检秀,陈先锐,陈小玲,黄艳燕,莫棋文,谢能中,黄日波. 应用合成生物学策略构建全细胞生物催化剂合成(S)-乙偶姻 *[J]. 中国生物工程杂志, 2019, 39(4): 60-68.
[8] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.
[9] 于思礼,刘雪,张昭宇,於洪建,赵广荣. 甜菜素的生物合成及其代谢调控进展 *[J]. 中国生物工程杂志, 2018, 38(8): 84-91.
[10] 程丽娜,陆海燕,曲淑玲,张轶群,丁娟娟,邹少兰. 微生物发酵法生产环磷酸腺苷研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 102-108.
[11] 赵秀丽, 周丹丹, 闫晓光, 吴昊, 财音青格乐, 李艳妮, 乔建军. 细菌小RNA的调控及在代谢工程中的应用[J]. 中国生物工程杂志, 2017, 37(6): 97-106.
[12] 于潇淳, 马世良. 米曲霉外源表达系统研究进展[J]. 中国生物工程杂志, 2016, 36(9): 94-100.
[13] 李晓波, 刘雪, 赵广荣. 微生物合成黄酮糖苷类天然产物研究进展[J]. 中国生物工程杂志, 2016, 36(8): 105-112.
[14] 胡桂元, 杨套伟, 饶志明, 刘梅, 徐美娟, 张显. 增强胞内NDAH水平和乙偶姻还原酶活力提高2,3-丁二醇产量[J]. 中国生物工程杂志, 2016, 36(6): 57-64.
[15] 高翠娟, 连思琪, 祁庆生. 代谢工程构建重组耶氏解脂酵母生产中长链聚羟基脂肪酸酯[J]. 中国生物工程杂志, 2016, 36(5): 53-58.