Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (10): 44-52    DOI: 10.13523/j.cb.20151007
研究报告     
蜡样芽孢杆菌ColR75E胶原酶的表达、纯化及酶学性质研究
张西轩, 李晔, 王亚航, 杜康龙, 张真, 阮海华
天津商业大学生物技术与食品科学学院 天津市食品生物技术重点实验室 天津 300134
Expression, Purification and Enzymatic Characterization of ColR75E Collagenase of Bacillus cereus R75E
ZHANG Xi-xuan, LI Ye, WANG Ya-hang, DU Kang-long, ZHANG Zhen, RUAN Hai-hua
College of Biotechnology & Food Science, Tianjin Key Laboratory of Food Science & Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
 全文: PDF(1672 KB)   HTML
摘要:

目的:为了进一步了解蜡样芽孢杆菌R75E胶原酶colR75E的特性,在大肠杆菌原核表达系统中表达colR75E胶原酶,并对表达的重组胶原酶进行纯化以及酶学性质研究。方法:以蜡样芽孢杆菌R75E基因组DNA为模板采用PCR法获得胶原酶colR75E基因,构建pET28a/colR75E重组质粒,并在大肠杆菌BL21(DE3)中进行诱导表达,利用Ni-NTA纯化的方式获得高纯度ColR75E胶原酶,利用胶原酶谱、胶原酶活力测定、Ⅰ型胶原蛋白降解产物电泳检测等方式对ColR75E胶原酶的酶学特性进行分析。结果:通过Ni-NTA纯化获得的蛋白经胶原酶谱、Ⅰ型胶原蛋白降解产物的检测时均表现出胶原蛋白的降解能力。在标准条件下测得其比活力为3.62 U/mg,Km为25.55μmol/L (2.93 mg/ml),Vmax为5.71μmol/(mg·min)。ColR75E胶原酶的最适反应温度为45℃,最佳反应pH为8.0。此外,ColR75E胶原酶对于不高于50℃的温度以及pH6.0~8.0的酸碱度范围具有良好的稳定性。ColR75E胶原酶可被Ca2+激活、但被Zn2+、Pb2+、Fe2+、Mn2+等金属离子抑制,抑制能力依次为Pb2+> Zn2+> Fe2+> Mn2+。ColR75E胶原酶对EDTA和EGTA的高敏感性进一步证实了该胶原酶为一种金属蛋白酶。结论:利用大肠杆菌原核表达系统获得高纯度高活性的蜡样芽孢杆菌胶原酶是可行的,为该胶原酶广泛应用于医疗、食品等工业领域中奠定了理论基础。

关键词: Ⅰ型胶原蛋白胶原酶酶学性质蜡样芽孢杆菌    
Abstract:

Objective: In order to investigate the enzymatic characteristics of ColR75E collagenase of Bacillus cereus R75E, the colR75E collagenase gene was expressed in E. coli prokaryotic expression system and acquired the recombinant ColR75E collagenase protein with high purity. Methods: The colR75E collagenase gene fragments were amplified using the Bacillus cereus R75E genomic DNA as template. The fragments were cloned into the pET28a vector, constructing recombinant pET28a/colR75E plasmid. Then, the pET28a/colR75E plasmid was introduced into the E.coli BL21(DE3). After IPTG induction, the recombinant ColR75E collagenase protein was purified with Ni-NTA affinity chromatography column. Subsequently, the characteristics of ColR75E collagenase of Bacillus cereus R75E were analyzed by collagen-zymography, collagen hydrolysis activity assay, Km and Vmax calculation and collagen degradative products SDS-PAGE detection. Results: The purified recombinant ColR75E collagenase of Bacillus cereus R75E exhibited the collagen hydrolysis activity, both showing with the obvious negative staining in collagen-zymography gel and progressive degradation of native type I collagen extracted from scales of grass carp with the prolong of treatment time by SDS-PAGE. The specific activity of recombinant ColR75E collagenase was 3.62 U/mg, its Km and Vmax were 25.55 μmol/L (2.93 mg/ml)and 5.71μmol/(mg·min), respectively. The optimum temperature to ColR75E collagenase was 45℃ and the optimum pH was 8.0 .In addition, the activity of recombinant ColR75E collagenase was stable both under the temperature no higher than 50℃ and the pH of buffer from 6.0 to 8.0. The recombinant ColR75E collagenase was activated by adding of Ca2+, but inhibited by adding of Zn2+, Pb2+, Fe2+, Mn2+, respectively. The inhibitory capability of these metal ions was Pb2+> Zn2+> Fe2+> Mn2+, subsequently. The high sensitivity of ColR75E collagenase to EDTA and EGTA further confirmed the ColR75E collagenase was a metallo-proteinase. Conclusion: It is feasible to acquire the recombinant ColR75E collagenase with both high purity and perfect hydrolysis activity in E. coli prokaryotic expression system, which supplies a foundation for the extensive application of ColR75E collagenase in field of medical and food industry.

Key words: Bacillus cereus    Type I collagen    Collagenase    Enzymatic characteristics
收稿日期: 2015-07-02 出版日期: 2015-10-25
ZTFLH:  Q819  
基金资助:

国家自然科学基金(81101220)、天津市应用基础与前沿研究计划(12JCQNJC08100)、"十二五"天津市中青年骨干创新人才支持计划,天津市创新团队建设(TD12-5049)资助项目

通讯作者: 阮海华     E-mail: ruanhaihua@tjcu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张西轩, 李晔, 王亚航, 杜康龙, 张真, 阮海华. 蜡样芽孢杆菌ColR75E胶原酶的表达、纯化及酶学性质研究[J]. 中国生物工程杂志, 2015, 35(10): 44-52.

ZHANG Xi-xuan, LI Ye, WANG Ya-hang, DU Kang-long, ZHANG Zhen, RUAN Hai-hua. Expression, Purification and Enzymatic Characterization of ColR75E Collagenase of Bacillus cereus R75E. China Biotechnology, 2015, 35(10): 44-52.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20151007        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I10/44

[1] Harrington D J. Bacterial collagenases and collagen-degrading enzymes and their potential role in human disease. Infect Immun, 1996, 64(6): 1885-1891.
[2] 金敏, 李君文, 王忠彦. 微生物胶原酶研究进展. 氨基酸和生物资源, 2003, 25(1): 3-8. Jin M, Li J W, Wang Z Y. Researches on collagenase secreted by microbes. Amino Acids and Biotic Resources, 2002, 25(1): 3-8.
[3] Mandl I. Bacterial collagenases and their clinical applications. Arzneimittelforschung, 1981, 32(10a): 1381-1384.
[4] Van Wart H E, Steinbrink D R. Complementary substrate specificities of class I and class II collagenases from Clostridium histolyticum. Biochemistry, 1985, 24(23): 6520-6526.
[5] Matsushita O, Jung C M, Katayama S, et al. Gene duplication and multiplicity of collagenases in Clostridium histolyticum. J Bacteriol, 1999, 181(3): 923-933.
[6] Eckhard U, Schönauer E, Nüss D, et al. Structure of collagenase G reveals a chew-and-digest mechanism of bacterial collagenolysis. Nat Struct Mol Biol, 2011, 18(10): 1109-1114.
[7] Lee P S, Lee K H. Escherichia coli——a model system that benefits from and contributes to the evolution of proteomics. Biotechnol Bioeng, 2003, 84(7): 801-814.
[8] 刘阳, 杨雅麟, 张宇婷, 等. 维氏气单胞菌B565β-N-乙酰氨基葡萄糖苷酶的表达, 纯化及酶学性质. 中国生物工程杂志, 2015, 35(2): 38-44. Liu Y, Yang Y L, Zhang Y T, et al. Expression, purification and characterization of β-N-acetylglucosaminidase from Aeromonasveronii B565. China Biotechnology, 2015, 35(2): 38-44.
[9] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72(1): 248-254.
[10] Gogly B, Groult N, Hornebeck W, et al. Collagen zymography as a sensitive and specific technique for the determination of subpicogram levels of interstitial collagenase. Anal Biochem, 1998, 255(2): 211-216.
[11] Bildt M M, Bloemen M, Kuijpers-Jagtman A M, et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in gingival crevicular fluid during orthodontic tooth movement. Eur J Orthodont, 2009, 31(5): 529-535.
[12] Mandl I, MacLennan J D, Howes E L, et al. Isolation and characterization of proteinase and collagenase from C. histolyticum. J Clin Invest, 1953, 32(12): 1323-1329.
[13] Nagano H, To K A. Purification of collagenase and specificity of its related enzyme from Bacillus subtilis FS-2. Biosci Biotech Bioch, 2000, 64(1): 181-183.
[14] Kim T, Silva J L, Parakulsuksatid P, et al. Optimization of enzymatic treatments for deskinning of catfish nuggets. J Aquat Food Prod T, 2014, 23(4): 385-393.
[15] Liu D, Liang L, Regenstein J M, et al. Extraction and characterisation of pepsin-solubilised collagen from fins, scales, skins, bones and swim bladders of bighead carp (Hypophthalmich thysnobilis). Food Chem, 2012, 133(4): 1441-1448.
[16] Wilson J J, Matsushita O, Okabe A, et al. A bacterial collagen-binding domain with novel calcium-binding motif controls domain orientation. Embo J, 2003, 22(8): 1743-1752.
[17] Kelley L A, Mezulis S, Yates C M, et al. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc, 2015, 10(6):845-858.
[18] Lima C A, Rodrigues P, Porto T S, et al. Production of a collagenase from Candida albicans URM3622. Biochem Eng J, 2009, 43(3): 315-320.
[19] Kaminishi H, Hagihara Y, Hayashi S, et al. Isolation and characteristics of collagenolytic enzyme produced by Candida albicans. Infect Immun, 1986, 53(2): 312-316.
[20] Suphatharaprateep W, Cheirsilp B, Jongjareonrak A. Production and properties of two collagenases from bacteria and their application for collagen extraction. New Biotechnol, 2011, 28(6): 649-655.
[21] Duarte A S, Correia A, Esteves A C. Bacterial collagenases—A review. Crit Rev Microbiol, 2014,(in print).
[22] Bodiga V L, Eda S R, Chavali S, et al. In vitro biological evaluation of glyburide as potential inhibitor of collagenases. Int J Biol Macromol, 2014, 70: 187-192.
[23] La Rocca G, Pucci-Minafra I, Marrazzo A, et al. Zymographic detection and clinical correlations of MMP-2 and MMP-9 in breast cancer sera. Brit J Cancer, 2004, 90(7): 1414-1421.

[1] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[2] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[3] 马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝. 来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*[J]. 中国生物工程杂志, 2020, 40(3): 65-71.
[4] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[5] 王菲,胡春辉,于浩. 6-羟基烟酸3-单加氧酶(NicC)催化反应机理研究 *[J]. 中国生物工程杂志, 2019, 39(7): 15-23.
[6] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[7] 谢玉锋,韩雪梅,路福平. 副干酪乳杆菌β-葡糖苷酶的表达、纯化及酶学性质研究 *[J]. 中国生物工程杂志, 2019, 39(5): 72-79.
[8] 朱梦露,王雪雨,刘鑫,路福平,孙登岳,秦慧民. 一种新型亮氨酸5-羟化酶NmLEH的异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2019, 39(12): 24-34.
[9] 王彤,徐岩,喻晓蔚. 毕赤酵母Kex2蛋白酶的同源表达及酶学性质 *[J]. 中国生物工程杂志, 2019, 39(1): 38-45.
[10] 郭倩倩,高登科,程晓涛,路福平,田之仓优,秦慧民. 胆固醇氧化酶PsCO4异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2018, 38(6): 34-42.
[11] 王男,金吕华,张玲,林荣,杨海麟. 信号肽对亮氨酸脱氢酶在Bacillus subtilis中分泌表达的影响及酶学性质研究[J]. 中国生物工程杂志, 2018, 38(4): 46-53.
[12] 程可利, 刘晓, 李素霞. 对SDS稳定的V8(V125T)蛋白酶突变体的高效表达及性质研究[J]. 中国生物工程杂志, 2017, 37(4): 56-67.
[13] 李雪晴, 袁风娇, 程建青, 董运海, 李剑芳, 邬敏辰. 杂合β-甘露聚糖酶AuMan5Aloop的H321对其酶学性质的影响[J]. 中国生物工程杂志, 2017, 37(2): 48-53.
[14] 王世伟, 王敏, 王卿惠. Rhodococcus ruber CGMCC3090腈水合酶纯化、酶学性质及结晶研究[J]. 中国生物工程杂志, 2017, 37(10): 42-52.
[15] 谢喜珍, 林娟, 谢勇, 叶秀云. 海洋来源琼胶酶的分离纯化及酶学性质研究[J]. 中国生物工程杂志, 2017, 37(1): 46-52.