Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (8): 109-115    DOI: 10.13523/j.cb.20150816
综述     
植物细胞培养生物反应器的种类特点及展望
申斓1, 周爱东2, 吴小芹1
1. 南方现代林业协同创新中心 南京林业大学林学院 南京 210037;
2. 镇江市林业有害生物防控检疫站 镇江 212000
Characteristics and Prospects of Different Types of Bioreactors Used for Plant Cell Culture
SHEN Lan1, ZHOU Ai-dong2, WU Xiao-qin1
1. Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
2. Zhenjiang Forestry Pest Control and Quarantine Station, Zhenjiang 212000, China
 全文: PDF(455 KB)   HTML
摘要:

生物反应器技术应用于植物细胞培养既可以打破环境条件的限制,又有助于生产过程的人为调控,为植物细胞大规模培养或工厂化直接生产植物细胞有用代谢产物创造了条件,是当前植物细胞培养工作的研究热点。在介绍植物细胞培养特点的基础上,对适用于植物细胞培养的各类生物反应器(搅拌式生物反应器、非搅拌式生物反应器、用于植物细胞固定化培养的生物反应器、光生物反应器以及一次性培养生物反应器)的原理、优缺点等进行比较分析,最后提出了植物细胞培养生物反应器研究的发展方向,以期为植物细胞培养生物反应器的选择及改良提供参考。

关键词: 植物细胞生物反应器工厂化培养    
Abstract:

Bioreactor technology can not only break the limitation of environmental conditions, but also contribute to artificial control of the productive process when it is used for growing plant cells in vitro, which creates conditions for large-scale cultivation of plant cells or industrialized production of useful metabolites, and it has been considered as a hot topic in recent work on plant cell culture. Based on the characteristics of plant cell culture, the principles and the advantages and disadvantages of various kinds of bioreactors for plant cells including stirred tank reactor, non-stirred bioreactor, immobilized bioreactor, photo-bioreactor and single-use bioreactor, were compared and analysed. Finally, the future perspectives of bioreactors for plant cell culture were outlined.

Key words: Plant cell    Bioreactor    Industrialized cultivation
收稿日期: 2015-04-10 出版日期: 2015-08-25
ZTFLH:  Q813  
基金资助:

江苏省科技支撑计划(BE2014405)、江苏省高校优势学科建设工程(PAPD)资助项目

通讯作者: 吴小芹     E-mail: xqwu@njfu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

申斓, 周爱东, 吴小芹. 植物细胞培养生物反应器的种类特点及展望[J]. 中国生物工程杂志, 2015, 35(8): 109-115.

SHEN Lan, ZHOU Ai-dong, WU Xiao-qin . Characteristics and Prospects of Different Types of Bioreactors Used for Plant Cell Culture. China Biotechnology, 2015, 35(8): 109-115.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150816        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I8/109


[1] 黄艳, 赵德修, 李佐虎. 植物细胞生物反应器培养的研究进展(I). 植物学通报, 2001, 18(5): 567-570. Hung Y, Zhao D X, Li Z H. Advances in the study on plant cell culture by bioreactor (I). Chinese Bulletin of Botany, 2001, 18(5): 567-570.

[2] 王志江, 郑裕国. 动植物细胞培养生物反应器的研究进展. 药物生物技术, 2005, 12(2): 117-120. Wang Z J, Zheng Y G. Technical research on the bioreactors for zooblast and plant cell cultivation. Pharmaceutical Biotechnology, 2005, 12(2): 117-120.

[3] Smart N J, Fowler M W. Effect of aeration on large-scale cultures of plant cells. Biotechnology Letters, 1981, 3(4): 171-176.

[4] Taticek R A, Moo-Young M, Legge R L. Effect of bioreactor configuration on substrate uptake by cell suspension cultures of the plant Eschscholtzia californica. Applied Microbiology and Biotechnology, 1990, 33(3): 280-286.

[5] 边黎明, 施季森. 植物生物反应器细胞悬浮培养研究进展. 南京林业大学学报: 自然科学版, 2004, 28(4): 101-104. Bian L M, Shi J S. Review on plant bioreactor for plant cell suspension culture. Journal of Nanjing Forestry University (Natural Sciences Edition), 2004, 28(4): 101-104.

[6] 余响华, 邵金华, 袁志辉, 等. 植物细胞工程技术生产紫杉醇研究进展. 西北植物学报, 2013, 33(6): 1279-1284. Yu X H, Shao J H, Yuan Z H, et al. Research progress on production of taxol by plant cell engineering. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(6): 1279-1284.

[7] 董燕, 刁玲武, 周联. 药用植物细胞悬浮培养的影响因素. 中医药信息, 2011, 28(3): 36-40. Dong Y, Diao L W, Zhou L. Influencing factors on the culturing of medicinal plants suspension cell. Information on Traditional Chinese Medicine, 2011, 28(3): 36-40.

[8] Georgiev M I, Eibl R, Zhong J J. Hosting the plant cells in vitro: recent trends in bioreactors. Applied Microbiology and Biotechnology, 2013, 97(9): 3787-3800.

[9] 杨小兵, 王增利, 史昊, 等. 光强对悬浮培养下铁皮石斛原球茎生长的影响. 河南农业科学, 2014, 43(1): 116-119. Yang X B, Wang Z L, Shi H, et al. Effect of light intensity on protocorm-like bodies growth of Dendrobium candidum under condition of suspension culture. Journal of Henan Agricultural Sciences, 2014, 43(1): 116-119.

[10] Georgiev M I, Weber J. Bioreactors for plant cells: hardware configuration and internal environment optimization as tools for wider commercialization. Biotechnology Letters, 2014, 36(7): 1359-1367.

[11] Tulecke W, Nickell L G. Production of large amounts of plant tissue by submerged culture. Science, 1959, 130(3379): 863-864.

[12] Verma P, Mathur A K, Masood N, et al. Tryptophan over-producing cell suspensions of Catharanthus roseus (L) G. Don and their up-scaling in stirred tank bioreactor: detection of a phenolic compound with antioxidant potential. Protoplasma, 2013, 250(1): 371-380.

[13] Homova V, Weber J, Schulze J, et al. Devil's claw hairy root culture in flasks and in a 3-L bioreactor: bioactive metabolite accumulation and flow cytometry. Z Naturforsch, 2010,65(7-8):472-478.

[14] Donnez D, Kim K H, Antoine S, et al. Bioproduction of resveratrol and viniferins by an elicited grapevine cell culture in a 2L stirred bioreactor. Process Biochemistry, 2011, 46(5): 1056-1062.

[15] Hilton M G, Rhodes M J C. Growth and hyoscyamine production of 'hairy root' cultures of Datura stramonium in a modified stirred tank reactor. Applied Microbiology and Biotechnology, 1990, 33(2): 132-138.

[16] Liu Y K, Li Y T, Lu C F, et al. Enhancement of recombinant human serum albumin in transgenic rice cell culture system by cultivation strategy. New Biotechnology, 2015, 32(3): 328-334.

[17] 刘春朝, 王玉春. 剪切力对植物细胞悬浮培养的影响. 化工冶金, 1998, 19(4): 379-384. Liu C Z, Wang Y C. Effects of shear stress on suspension cultivation of plant cells. Engineering Chemistry & Metallurgy, 1998, 19(4): 379-384.

[18] 刘春朝, 叶和春. 利用气升式内环流生物反应器培养青蒿毛状根生产青蒿素. 植物学报, 1999, 41(2): 181-183. Liu C Z, Ye H C. Production of artemisinin by Artemisia annua hairy root culture in a internal loop airlift bioreactor. Acta Botanica Sinica, 1999, 41(2): 181-183.

[19] Tanaka H. Oxygen transfer in broths of plant cells at high density. Biotechnology and Bioengineering, 1982, 24(2): 425-442.

[20] Kamen A A, Chavarie C, Andre G, et al. Design parameters and performance of a surface baffled helical ribbon impeller bioreactor for the culture of shear sensitive cells. Chemical Engineering Science, 1992, 47(9): 2375-2380.

[21] 程龙, 张梁, 陶文沂, 等. 耦合培养对紫杉醇产量的影响. 生物加工过程, 2008, 6(1): 51-55. Cheng L, Zhang L, Tao W Y, et al. The effects of coupling cultivation on the paclitaxel yield. Chinese Journal of Bioprocess Engineering, 2008, 6(1): 51-55.

[22] Jin M Y, Piao X C, Xiu J R, et al. Micropropagation using a bioreactor system and subsequent acclimatization of grape rootstock '5BB'. Scientia Horticulturae, 2013, 164: 35-40.

[23] Cui H Y, Baque M A, Lee E J, et al. Scale-up of adventitious root cultures of Echinacea angustifolia in a pilot-scale bioreactor for the production of biomass and caffeic acid derivatives. Plant Biotechnology Reports, 2013, 7(3): 297-308.

[24] 欧阳平凯, 陆永明, 肖民耕, 等. 大规模植物细胞培养生物反应器. 生物工程进展, 1992, 12(5): 9-13. Ouyang P K, Lu Y M, Xiao M G, et al. Bioreactors for large-scale plant cell culture. Progress in Biotechnology, 1992, 12(5): 9-13.

[25] Valluri J V, Treat W J, Soltes E J. Bioreactor culture of heterotrophic sandalwood (Santalum album L.) cell suspensions utilizing a cell-lift impeller. Plant Cell Reports, 1991, 10(6-7): 366-370.

[26] Kim D I I, Pedersen H, Chin C K. Cultivation of Thalictrum rugosum cell suspension in an improved airlift bioreactor: stimulatory effect of carbon dioxide and ethylene on alkaloid production. Biotechnology and Bioengineering, 1991, 38(4): 331-339.

[27] Kaewpintong K, Shotipruk A, Powtongsook S, et al. Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Bioresource Technology, 2007, 98(2): 288-295.

[28] Thanh N T, Murthy H N, Paek K Y. Optimization of ginseng cell culture in airlift bioreactors and developing the large-scale production system. Industrial Crops and Products, 2014, 60: 343-348.

[29] Thanh N T, Murthy H N, Yu K W, et al. Methyl jasmonate elicitation enhanced synthesis of ginsenoside by cell suspension cultures of Panax ginseng in 5-l balloon type bubble bioreactors. Applied Microbiology and Biotechnology, 2005, 67(2): 197-201.

[30] 陈书安, 王晓东, 袁晓凡, 等. 应用鼓泡塔式反应器生产藏红花素的研究. 中国医药生物技术, 2011, 6(2): 141-144. Chen S A, Wang X D, Yuan X F, et al. Production of crocin by bubble column reactor. Chinese Medicinal Biotechnology, 2011, 6(2): 141-144.

[31] Wilson S A, Roberts S C. Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnology Journal, 2012, 10(3): 249-268.

[32] Mishra B N, Ranjan R. Growth of hairy-root cultures in various bioreactors for the production of secondary metabolites. Biotechnology and Applied Biochemistry, 2008, 49(1): 1-10.

[33] Tanaka H, Nishijima F, Suwa M, et al. Rotating drum fermentor for plant cell suspension cultures. Biotechnology and Bioengineering, 1983, 25(10): 2359-2370.

[34] Shimomura K, Sudo H, Saga H, et al. Shikonin production and secretion by hairy root cultures of Lithospermum erythrorhizon. Plant Cell Reports, 1991, 10(6-7): 282-285.

[35] Shibasaki N, Hirose K, Yonemoto T, et al. Suspension culture of Nicotiana tabacum cells in a rotary-drum bioreactor. Journal of Chemical Technology and Biotechnology, 1992, 53(4): 359-363.

[36] Huang T K, McDonald K A. Bioreactor systems for in vitro production of foreign proteins using plant cell cultures. Biotechnology Advances, 2012, 30(2): 398-409.

[37] Williams P D. Capsicum spp.(Peppers):In vitro production of capsaicin. Biotechnology in Agriculture and Forestry, 1993,21(1):51-63.

[38] Alfermann A W, Bergmann W, Figur C, et al. Biotransformation of beta-methyldigitoxin to beta-methyldigoxin by cell cultures of Digitalis lanata. Seminar Series-Society for Experimental Biology, 1983, 18: 67-74.

[39] Pépin M F, Chavarie C, Archambault J. Growth and immobilization of Tripterygium wilfordii cultured cells. Biotechnology and Bioengineering, 1991, 38(11): 1285-1291.

[40] Furuya T, Koge K, Orihara Y. Long term culture and caffeine production of immobilized coffee (Coffea arabica L). cells in polyurethane foam. Plant Cell Reports, 1990, 9(3): 125-128.

[41] Veliky I A, Jones A. Bioconversion of gitoxigenin by immobilized plant cells in a column bioreactor. Biotechnology Letters, 1981, 3(10): 551-554.

[42] Morris P, Smart N J, Fowler M W. A fluidised bed vessel for the culture of immobilised plant cells and its application for the continuous production of fine cell suspensions. Plant Cell, Tissue and Organ Culture, 1983, 2(3): 207-216.

[43] Bramble J L, Graves D J, Brodeliust P. Plant cell culture using a novel bioreactor: the magnetically stabilized fluidized bed. Biotechnology Progress, 1990, 6(6): 452-457.

[44] Prenosil J E, Pedersen H. Immobilized plant cell reactors. Enzyme and Microbial Technology, 1983, 5(5): 323-331.

[45] Göksungur Y, Zorlu N. Production of ethanol from beet molasses by Ca-alginate immobilized yeast cells in a packed-bed bioreactor. Turkish Journal of Biology, 2001, 25(3): 265-275

[46] Fischer A U, Alfermann W. Cultivation of photoautotrophic plant cell suspensions in the bioreactor: influence of culture conditions. Journal of Biotechnology, 1995, 41(1): 19-28.

[47] Ogbonna J C, Yada H, Tanaka H. Light supply coefficient: a new engineering parameter for photobioreactor design. Journal of Fermentation and Bioengineering, 1995, 80(4): 369-376.

[48] Xue S, Zhang Q, Wu X, et al. A novel photobioreactor structure using optical fibers as inner light source to fulfill flashing light effects of microalgae. Bioresource Technology, 2013, 138: 141-147.

[49] 董汝晶, 谯顺彬, 田辉, 等. 藻类光生物反应器的设计及应用研究. 食品工业科技, 2012, 33(010): 306-309. Dong R J, Qiao S B, Tian H, et al. Design of photo-bioreactor and the application for cultivating algae. Science and Technology of Food Industry 2012, 33(010): 306-309.

[50] 张俊杰, 袁晓雄, 林建, 等. 大规模封闭式光生物反应器培养小球藻效果试验. 盐业与化工, 2012, 41(10): 28-32. Zhang J J, Yuan X X, Lin J, et al. Experiment on culturing Chlorella in closed photobioreactor with large-scale. Journal of Salt and Chemical Industry, 2012, 41(10): 28-32.

[51] Lim J A, Sinclair A. Process economy of disposable manufacturing-process models to minimize upfront investment. American Pharmaceutical Review, 2007, 10(6): 114.

[52] Mauter M. Environmental life-cycle assessment of disposable bioreactors. Bioprocess International, 2009, 8(4): 18-28.

[53] Eibl R, Eibl D. Single-use Technology in Biopharmaceutical Manufacture. USA:John Wiley & Sons, 2010.

[54] Paek K Y, Murthy H N, Zhong J J. Production of biomass and bioactive compounds using bioreactor technology. Germany:Springer Netherlands, 2014.

[55] Werner S, Olownia J, Egger D, et al. An approach for scale-up of geometrically dissimilar orbitally shaken single-use bioreactors. Chemie Ingenieur Technik, 2013, 85(1-2): 118-126.

[56] Kwon J Y, Yang Y S, Cheon S H, et al. Bioreactor engineering using disposable technology for enhanced production of hCTLA4Ig in transgenic rice cell cultures. Biotechnology and Bioengineering, 2013, 110(9): 2412-2424.

[57] 成喜雨, 何姗姗, 倪文, 等. 植物组织培养生物反应器技术研究进展. 生物加工过程, 2003, 1(2): 18-22. Cheng X Y, He S S, Ni W, et al. Advances in bioreactor technology for plant tissue culture. Chinese Journal of Bioprocess Engineering, 2003, 1(2): 18-22.

[58] 王士杰, 许永华, 郜玉铜, 等. 发酵技术在植物细胞生产中的应用现状. 安徽农业科学, 2011, 39(1): 8-10. Wang S J, Xu Y H, Gao Y T, et al. The application of fermentation technology in plant cell culture. Journal of Anhui Agricultural Sciences, 2011, 39(1): 8-10.

[59] 刘颖, 李冬杰, 魏景芳. 药用植物细胞生物反应器技术的研究进展. 中国生物工程杂志, 2005, 25(4): 67-70. Liu Y, Li D J, Wei J F. Advances in the study on bioreactor technology of medicinal plants cell. China Biotechnology, 2005, 25(4): 67-70.

[1] 靳露,周航,曹云,王振守,曹荣月. 高通量灌流培养模型在生物工艺开发中的应用研究[J]. 中国生物工程杂志, 2020, 40(8): 63-73.
[2] 梁振鑫,刘芳,张玮,刘庆友,李力. 抗p185 erb B2人鼠嵌合抗体ChAb26转基因小鼠乳腺生物反应器的制备与验证 *[J]. 中国生物工程杂志, 2019, 39(8): 40-51.
[3] 郭玉蕾,唐亮,孙瑞强,李尤,陈依军. 高通量微型生物反应器的研究进展[J]. 中国生物工程杂志, 2018, 38(8): 69-75.
[4] 李亚芳,赵颖慧,刘赛宝,王伟,曾为俊,王金泉,陈洪岩,孟庆文. 鸡OV启动子表达HA对禽流感病毒攻击提供完全保护 *[J]. 中国生物工程杂志, 2018, 38(7): 67-74.
[5] 孙静静,周伟伟,周雷鸣,赵巧辉,李桂林. 杂交瘤细胞体外大规模培养研究进展[J]. 中国生物工程杂志, 2018, 38(10): 82-89.
[6] 苏晓蕊, 李伟国, 王延辉, 高晓静, 闪伊红, 谭菲菲, 李向东, 田克恭. 重组杆状病毒细小VP2蛋白40L生物反应器放大工艺研究[J]. 中国生物工程杂志, 2017, 37(10): 60-64.
[7] 林优红, 程霞英, 严依雯, 梁宗锁, 杨宗岐. 衣藻叶绿体表达重组蛋白及表达优化策略[J]. 中国生物工程杂志, 2017, 37(10): 118-125.
[8] 刘婷婷, 梁梓强, 梁士可, 郭技星, 王方海. 利用生物工程技术生产蜘蛛丝的研究进展[J]. 中国生物工程杂志, 2016, 36(5): 132-137.
[9] 赵绘存. 基于专利信息可视化的生物反应器发展态势分析[J]. 中国生物工程杂志, 2016, 36(1): 115-121.
[10] 张丹凤, 余自青, 吴锁伟, 饶力群, 万向元. 植物生物反应器在分子医药农业中的应用[J]. 中国生物工程杂志, 2016, 36(1): 86-94.
[11] 梁振鑫, 尹富强, 刘庆友, 李力. 转基因动物乳腺生物反应器相关技术及研究进展[J]. 中国生物工程杂志, 2015, 35(2): 92-98.
[12] 张斯敏, 高越, 方彧聃, 张金脉, 张敬之. 乳腺生物反应器特异高效表达载体的构建[J]. 中国生物工程杂志, 2014, 34(7): 49-55.
[13] 林美玲, 唐寅, 张明, 易小萍, 黄明志. 重组HSV-Ⅱ病毒疫苗的微载体悬浮培养生产工艺研究[J]. 中国生物工程杂志, 2014, 34(3): 68-78.
[14] 雷学青, 卢哲, 高保燕, 张文源, 李爱芬, 张成武. 利用平板反应器大量培养高产油绿藻——尖状栅藻的生长和油脂积累规律[J]. 中国生物工程杂志, 2014, 34(11): 91-99.
[15] 闫亚彬, 蔡勤, 蔡琳琳, 龚秀丽, 朱怡文, 管翌华, 黄英. 比较牛催乳素与生长激素对外源基因表达的影响[J]. 中国生物工程杂志, 2013, 33(8): 91-97.