Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (8): 51-58    DOI: 10.13523/j.cb.20150808
研究报告     
proCputP基因的敲除对钝齿棒杆菌产L-精氨酸生理代谢的影响
万方1, 张斌1, 陈民良2, 陈进聪2, 陈雪岚1
1. 江西师范大学生命科学学院 南昌 330022;
2. 南昌大学生命科学学院 南昌 330047
Effects of proC and putP Deletion on Physiological Metabolism of L-arginine-producing Strain Corynebacterium crenatum
WAN Fang1, ZHANG Bin1, CHEN Min-liang2, CHEN Jin-cong2, CHEN Xue-lan1
1. College of Life Science, Jiangxi Normal University, Nanchang 330022, China;
2. College of Life Science, Nanchang University, Nanchang 330047, China
 全文: PDF(798 KB)   HTML
摘要:

为了选育精氨酸高产菌株,基于谷氨酸棒杆菌的基因组尺度代谢网络模型的指导,以钝齿棒杆菌(Corynebacterium crenatum)MT-M4为出发菌株,通过基因敲除技术构建了proCputP敲除菌株。摇瓶发酵结果表明,proC敲除菌株精氨酸产量达到9.94g/L,较出发菌株提高了15.90%,葡萄糖转化率提高了26.02%。由于其生长受到明显抑制,因此在发酵液中外源添加24mmol/L的脯氨酸,结果发现其精氨酸产量达到12.22g/L,且菌株恢复生长。putP敲除菌株精氨酸产量达到12.23g/L,较出发菌株提高了42.70%,葡萄糖转化率提高了49.31%。以上结果显示,putP的敲除比proC的敲除更有利于精氨酸的合成,putP的敲除对菌株的生理代谢基本无影响且无需外添加脯氨酸。

关键词: 基因敲除钝齿棒杆菌精氨酸基因组尺度代谢网络模型生理代谢    
Abstract:

The recombinant strains of C. crenatum MT-M4 ΔproC and C. crenatum MT-M4 ΔputP were separately constructed based on genome-scale metabolic network model (GSMN) of Corynebacterium glutamicum. As results shown, L-arginine production of C. crenatum MT-M4 ΔproC was significantly increased by approximately 15.90% higher than that of the original strain, reached to 9.94g/L with glucose transformation rate increased by 26.02%. However, the growth of C. crenatum MT-M4 ΔproC was obviously inhibited. When 24 mmol/L of proline was added, the arginine production reached to 12.22g/L and its growth also got well. The L-arginine production of C. crenatum MT-M4 ΔputP was significantly increased by 42.70% and reached to 12.23g/L with glucose transformation rate increased by 49.31%. The results showed that putP deletion compared with proC deletion was more conducive to L-arginine biosynthesis. The disruption of putP had no influence on the physiological metabolism of the bacteria strain and the mutant strain did not need proline added in medium.

Key words: Gene knock-out    Corynebacterium crenatum    L-arginine    Genome-scale metabolic network model    Metabolism
收稿日期: 2015-03-19 出版日期: 2015-08-25
ZTFLH:  Q789  
基金资助:

国家自然科学基金资助项目(31360219,30960012)

通讯作者: 陈雪岚     E-mail: xuelanchen162@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

万方, 张斌, 陈民良, 陈进聪, 陈雪岚. proCputP基因的敲除对钝齿棒杆菌产L-精氨酸生理代谢的影响[J]. 中国生物工程杂志, 2015, 35(8): 51-58.

WAN Fang, ZHANG Bin, CHEN Min-liang, CHEN Jin-cong, CHEN Xue-lan . Effects of proC and putP Deletion on Physiological Metabolism of L-arginine-producing Strain Corynebacterium crenatum. China Biotechnology, 2015, 35(8): 51-58.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150808        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I8/51


[1] Mou J, Fang H, Liu Y, et al. Design, synthesis and primary activity assay of bi-or tri-peptide analogues with the scaffold L-arginine as amino-peptidase N/CD13 inhibitors. Bioorganic & Medicinal Chemistry, 2010, 18(2): 887-895.

[2] Bing W, Jun B, Jian G, et al. L-arginine impacts pulmonary vascular structure in rats with an aortocaval shunt. The Journal of Surgical Research, 2002, 108(1): 20-31.

[3] Greene J M, Dunaway C W, Bowers S D, et al. Dietary L-arginine supplementation during gestation in mice enhances reproductive performance and Vegfr2 transcription activity in the fetoplacental unit. The Journal of Nutrition, 2012, 142(3): 456-460.

[4] 徐美娟, 张显, 饶志明, 等. 钝齿棒杆菌 N-乙酰鸟氨酸转氨酶的克隆表达分析及其重组菌的精氨酸发酵. 生物工程学报, 2011, 27(7): 1013-1023. Xu M J, Zhang X, Rao Z M, et al. Cloning, expression and characterization of N-acetylornithine aminotransferase from Corynebacterium crenatum and its effects on L-arginine fermentation. Chinese Journal of Biotechnology, 2011, 27(7): 1013-1023.

[5] Dou W, Xu M, Cai D, et al. Improvement of L-arginine production by overexpression of a bifunctional ornithine acetyltransferase in Corynebacterium crenatum. Applied Biochemistry and Biotechnology, 2011, 165(3-4): 845-855.

[6] 张斌, 陈进聪, 万方, 等. L-精氨酸产生菌的分子育种. 中国生物工程杂志, 2014, 34(4): 127-132. Zhang B, Chen J C, Wan F, et al. Progress of molecular breeding in L-arginine producing strains. China Biotechnology, 2014, 34(4): 127-132.

[7] Ikeda M, Mitsuhashi S, Tanaka K, et al. Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer. Applied and Environmental Microbiology, 2009, 75(6): 1635-1641.

[8] Xu M, Rao Z, Dou W, et al. Site-directed mutagenesis and feedback-resistant N-acetyl-L-glutamate kinase (NAGK) increase Corynebacterium crenatum L-arginine production. Amino Acids, 2012, 43(1): 255-266.

[9] Park S H, Kim H U, Kim T Y, et al. Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nature Communications, 2014, 5: 4618

[10] 王晖, 马红武, 赵学明. 基因组尺度代谢网络研究进展. 生物工程学报, 2010, 26(10): 1340-1348. Wang H, Ma H W, Zhao X M. Progress in genome-scale metabolic network: a review. Chinese Journal of Biotechnology, 2010, 26(10): 1340-1348.

[11] Huang D, Li S, Xia M, et al. Genome-scale metabolic network guided engineering of Streptomyces tsukubaensis for FK506 production improvement. Microbial Cell Factories,2013,12(1):1-18.

[12] Li S, Huang D, Li Y, et al. Rational improvement of the engineered isobutanol-producing Bacillus subtilis by elementary mode analysis. Microbial Cell Factories, 2012,11(1):101.

[13] Kjeldsen K R, Nielsen J. In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnology and Bioengineering, 2009, 102(2): 583-597.

[14] Meng H, Lu Z, Wang Y, et al. In silico improvement of heterologous biosynthesis of erythromycin precursor 6-deoxyerythronolide B in Escherichia coli. Biotechnology and Bioprocess Engineering, 2011, 16(3): 445-456.

[15] Lee S J, Lee D Y, Kim T Y, et al. Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Applied and Environmental Microbiology, 2005, 71(12): 7880-7887.

[16] Delauney A J, Verma D P S. A soybean gene encoding Δ1-pyrroline-5-carboxylate reductase was isolated by functional complementation in Escherichia coli and is found to be osmoregulated. Molecular and General Genetics, 1990, 221(3): 299-305.

[17] Hilger D, Polyhach Y, Jung H, et al. Backbone structure of transmembrane domain IX of the Na+/proline transporter PutP of Escherichia coli. Biophysical Journal, 2009, 96(1): 217-225.

[18] Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry,1959,31(3): 426-428.

[19] Jensen J V, Wendisch V F. Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum. Microb Cell Fact, 2013, 12: 63.

[20] 郑素慧, 李文军, 娄恺. L-脯氨酸发酵生产的研究进展. 新疆农业科学, 2007, 44(S2): 6-10. Zheng S H, Li W J, Lou K. Research progress of L-proline production by fermentation. Xinjiang Agricultural Sciences, 2007, 44(S2): 6-10.

[21] Csonka L N, Gelvin S B, Goodner B W, et al. Nucleotide sequence of a mutation in the proB gene of Escherichia coli that confers proline overproduction and enhanced tolerance to osmotic stress. Gene, 1988, 64(2): 199-205.

[22] 武敏, 马红武. 基因组尺度集成细胞网络模型研究进展. 微生物学通报, 2014, 41(2): 367-375. Wu M, Ma H W. The progress of integrated genome-scale cellular networks. Institute of Microbiology, 2014, 41(2): 367-375.

[1] 彭海丽,侯占铭. MDT1基因参与禾谷镰刀菌分生孢子发生和营养生长 *[J]. 中国生物工程杂志, 2020, 40(8): 10-18.
[2] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[3] 郭晶,侯占铭. Folpcs1基因对尖孢镰刀菌亚麻专化型的无性繁殖和营养生长的调控 *[J]. 中国生物工程杂志, 2020, 40(3): 48-64.
[4] 郭胜楠, 李信晓, 王峰, 刘昆梅, 丁娜, 扈启宽, 孙涛. 海马与新皮质组织特异性GABRG2基因敲除小鼠模型的构建及其在遗传性癫痫伴热性惊厥附加症中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(3): 9-20.
[5] 郭超婧,朱琼,张新,李磊,张令强. 去泛素化酶OTUB1肝脏特异性基因敲除小鼠模型的构建与表型分析 *[J]. 中国生物工程杂志, 2019, 39(5): 80-87.
[6] 万颖寒,慈磊,王珏,龚慧,李俊,董茹,孙瑞林,费俭,沈如凌. PD-L1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2019, 39(12): 42-49.
[7] 吴果果,宋淑婷,岳荣,张晶,关莹,王玥,刘宝爱,吕学敏,魏建军,张会图. 反向筛选标记基因upp在杀真菌链霉菌遗传改造中的应用 *[J]. 中国生物工程杂志, 2019, 39(11): 78-86.
[8] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[9] 苏春晓,张晓玉,曾晗,陈压西,阮雄中,杨萍. 肝脏特异性CD36基因敲除小鼠的制备及鉴定 *[J]. 中国生物工程杂志, 2018, 38(8): 26-33.
[10] 舒群峰,徐美娟,李静,张显,杨套伟,许正宏,饶志明. 钝齿棒杆菌中异源表达N-乙酰鸟氨酸脱乙酰基酶合成L-鸟氨酸的研究 *[J]. 中国生物工程杂志, 2018, 38(7): 29-39.
[11] 戴红苗,付业胜,张令强. 应用CRISPR/Cas9技术构建YOD1基因敲除小鼠 *[J]. 中国生物工程杂志, 2018, 38(6): 52-57.
[12] 盛玉瑞,李斌,王斌,左娣,马琳,任晓璠,郭乐,刘昆梅. 利用CRISPR/Cas9技术构建AEG-1基因敲除U251细胞系并探讨其转移行为的特点 *[J]. 中国生物工程杂志, 2018, 38(10): 38-47.
[13] 孙一平, 王越, 金镇, 王晓岩, 孙磊, 张璇, 冯冲, 周效华. SHBG基因敲除小鼠模型的建立及其表型分析[J]. 中国生物工程杂志, 2017, 37(8): 39-45.
[14] 张震阳, 杨艳坤, 战春君, 李翔, 刘秀霞, 白仲虎. Pichia pastoris X-33 ΔGT2缓解甘油对AOX1的阻遏并用于外源蛋白的高效表达[J]. 中国生物工程杂志, 2017, 37(1): 38-45.
[15] 杜红燕, 李天明, 刘金雷, 冯惠勇. 构建尿嘧啶磷酸核糖转移酶基因缺失菌株实现Gluconobacter suboxydans基因组无痕修饰[J]. 中国生物工程杂志, 2016, 36(7): 64-71.