Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (6): 46-53    DOI: 10.13523/j.cb.20150608
技术与方法     
微流控芯片对乳腺癌细胞MDA-MB-231的捕获及再培养研究
桑维维1,2, 常亚男1, 李娟1
1. 中国科学院高能物理研究所 北京 100049;
2. 安徽大学生命科学学院 合肥 230601
The Development of Microfluidic Chip for the Capture of Breast Cancer Cells and Its Effect on Captured Cells
SANG Wei-wei1,2, CHANG Ya-nan1, LI Juan1
1. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
2. School of Life Sciences, Anhui University, Hefei 230601, China
 全文: PDF(1540 KB)   HTML
摘要:

目的:利用实验室构建的微流控芯片对乳腺癌细胞(MDA-MB-231)进行捕获,提高捕获率并保证细胞活性,实现再培养。抗肿瘤药物阿霉素处理正常培养和再培养的细胞,分析细胞内的基因表达变化。方法:对微流控芯片进行基底修饰, 利用MUC1抗原与抗体特异性结合捕获肿瘤细胞,优化捕获条件提高捕获率。对微流控芯片捕获的细胞进行分离、收集和再培养。用1μmol/L 阿霉素对正常培养和再培养的细胞分别孵育24h,然后提取RNA并逆转录合成cDNA。选择乳腺癌细胞中高表达及与肿瘤转移相关的基因 FN1、ITGA6和LAMB3 设计引物,以cDNA为模板分别进行RT-PCR扩增,对琼脂糖凝胶电泳结果进行灰度分析。结果: 经MUC1抗体修饰的微流控芯片能有效地捕获肿瘤细胞,捕获率达80%±3%,释放率约98%,细胞释放后存活率高实现再培养。阿霉素对正常培养和再培养的乳腺癌细胞中 FN1、ITGA6 和LAMB3 的基因表达均有抑制作用。结论: MUC1抗体修饰的微流控芯片能有效捕获乳腺癌细胞并实现再培养,捕获前后细胞内基因表达无显著差异,均能产生药物敏感性。

关键词: 微流控芯片捕获再培养阿霉素MDA-MB-231    
Abstract:

Objective: To achieve an effective capture efficiency of breast cancer cell (MDA - MB-231) by the microfluidic chip, and then analyse the changes of the target genes FN1, ITGA6 and LAMB3 expressing level in the tumor cells. Methods: The substrate of microfluidic chip was coupled with MUC1 antibodies, which could capture the tumor cells by the antigen on the cell surface. The conditions of cell capture were optimized to gain high cell capture efficiency. The captured cells were released by trypsin digestion and then the released cells were collected and re-cultured. The normal and re-cultivated cells were incubated with 1μmol/L doxorubicin for 24h respectively. Then the RNA in the cells was extracted and reversed to synthesize DNA and the target genes FN1, ITGA6 and LAMB3 were amplified by reverse transcriptase polymerase chain reaction (RT-PCR). Results: The tumor cells can be effectively captured by the microfluidic bio-chip after MUC1 antibodies were modified on the surface of chip and the capture rate can reach 80%. The cells release efficiency was as high as 98% and the released cells still had high viability which could be re-cultured. Doxorubicin could inhibit the expression quantity of FN1, ITGA6 and LAMB3 in normal and re-cultivated MDA-MB-231 cells. Conclusion: The tumor cells can be captured effectively by the microfluidic chip and re-cultured. The expressions of genes of the cells were not interfered remarkably for pre or post-captured. All of these would lay the foundation for the following related research such as biochemistry and molecular biology research, the efficacy evaluation analysis of antitumor drugs and so on.

Key words: Microfluidic device    Capture and re-culture    Doxorubicin    MDA-MB-231
收稿日期: 2015-03-17 出版日期: 2015-06-25
ZTFLH:  Q819  
基金资助:

"973"国家重大科技计划项目(2015CB932104)、国家自然科学青年基金(11405185)资助项目

通讯作者: 李娟     E-mail: lijuan@ihep.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

桑维维, 常亚男, 李娟. 微流控芯片对乳腺癌细胞MDA-MB-231的捕获及再培养研究[J]. 中国生物工程杂志, 2015, 35(6): 46-53.

SANG Wei-wei, CHANG Ya-nan, LI Juan. The Development of Microfluidic Chip for the Capture of Breast Cancer Cells and Its Effect on Captured Cells. China Biotechnology, 2015, 35(6): 46-53.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150608        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I6/46


[1] Asworth T R. A case of cancer in which cells similar to those in tumors were seen in the blood after death. Aust Med J,1869,14:146-149.

[2] Paterlini-Brechot P, Benali N L.Circulating tumor cells(CTC) detection:clinical impact and future directions. Cancer Lett,2007,253(2):180-204.

[3] Krebs M G, Metcalf R L, Carter L, et al. Molecular analysis of circulating tumor cells-biology and biomarkers. Nat RevClin Oncol, 2014,11(3):129-144.

[4] Bhagat A A S, Bow H, Hou H W, et al. Microfluidics for cell seperation. Med Bio Eng Comput,2010,48(10):999-1014.

[5] Feng X J, Du W, Luo Q M, et al. Microfluidic chip: next-generation platform for systems biology. Anal Chim Acta,2009,650(1):83-97.

[6] Alix-Panabieres C, Vendrell J P, Pelle O, et al. Detection and characterization of putative metastatic precursor cells in cancer patients. Clin Chem,2007,53(3):537-539.

[7] 鲁藜,邓华瑜,范维珂. MUC1的表达与乳腺癌细胞粘附的关系.癌症,2004,23(11):1294-1296. Lu L, Deng Y H, Fan W K. Correlation of MUC1 expression to adhesion of breast cancer cell line MDA-MB-231. Chinese Journal of Cancer,2004,23(11):1294-1296.

[8] Kang Y B, Massague J. Epithelial-mesenchymal transitions:Twist in development and metastasis. Cell,2004,118(3):277-279.

[9] Friedl P, Wolf K. Tumour-cell invasion and migration: Diversity and escape mechanisms. Nat Rev Cancer,2003,3(5):362-374.

[10] Sheng W, Ogunwobi O O, Chen T, et al. Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Lab Chip,2014,14(1):89-98.

[11] Ghossein R A, Carusone L, Bhattacharya S. Polymerase chain reaction detection of micrometastases and circulating tumor cells:application to melanoma,prostate and thyroid carcinomas. Diagn Mol Pathol,1999,8(4):165-175.

[12] Mallory J C, Crudden G, Oliva A, et al. A novel group of genes regulates susceptibility to antineoplastic drugs in highly tumorigenic breast cancer cells. Mol Pharmacol, 2005,68(6):1747-1756.

[13] Zhang X L, Jonse P, Haswell S J. Attachment and detachment of living cells on modified microchannel surfaces in a microfiuidic-based lab-on-a-chip system. Chemical Engineering Journal,2008,135:82-88.

[14] 宋云飞,张健,张连伟. 循环肿瘤细胞的检测对乳腺癌诊治意义的研究现状.临床与病理杂志,2014,34(5):585-595. Song Y F, Zhang J, Zhang L W. The status quo of the detection of circulating tumor cells in breast cancer diagnosis and its significance. Journal of Clinical and Pathological Research,2014,34(5):585-595.

[15] 杜珍武,王茜,张玉成,等. 应用凝胶成像分析系统定量测定 DNA含量的检测范围.中国体视学与图像分析,2008,13(4):264-267. Du Z W, Wang Q, Zhang Y C, et al. Applicable range of quantitative detection of DNA content by gel imaging analysis system. Chinese Journal Stereology and Image Anlysis,2008,13(4):264-267.

[16] Riethdorf S, Fritsche H, Muller V, et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer:A validation study of the CellSearch system. Clin Cancer Res,2007,13(3):920-928.

[1] 时忠林,崔俊生,杨柯,胡安中,李亚楠,刘勇,邓国庆,朱灿灿,朱灵. 基于微流控芯片的核酸等温扩增技术研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 116-128.
[2] 陈亮,高姗,毛海央,王云翔,冀斌,金志颖,康琳,杨浩,王景林. 超大表面积自驱动微流控芯片的设计与制备 *[J]. 中国生物工程杂志, 2019, 39(6): 17-24.
[3] 蒋丽莉,郑峻松,李艳,邓均,方立超,黄辉. 基于微流控芯片的体外血脑屏障模型构建 *[J]. 中国生物工程杂志, 2017, 37(12): 1-7.
[4] 吴俊, 严新, 邵荣, 段菁华. 阿霉素-姜黄素聚氰基丙烯酸正丁酯复方纳米粒的研制及逆转MCF-7/ADR细胞多药耐药的研究[J]. 中国生物工程杂志, 2013, 33(5): 35-43.
[5] 郭春芳, 张阳德, 王吉伟, 潘一峰, 廖明媚, 王宁. 载阿霉素柔性脂质体的性质及体外抗肿瘤效应[J]. 中国生物工程杂志, 2013, 33(3): 9-14.
[6] 马伟峰, 杨飞华, 赵海山, 杜军, 蔡绍晖. FAPα酶激活式靶向抗肿瘤前药: Z-GP-Dox对斑马鱼的毒性评价[J]. 中国生物工程杂志, 2012, 32(07): 37-42.
[7] 谢秋玲, 卢加, 刘兰, 张传宇, 郭欣泳, 彭雯丹, 陈小佳. 乳腺癌细胞中人血小板衍生生长因子受体β启动子的基础活性研究[J]. 中国生物工程杂志, 2011, 31(04): 18-24.
[8] 赵振礼, 蔡绍皙, 戴小珍. 微流控芯片在干细胞研究中的应用[J]. 中国生物工程杂志, 2011, 31(03): 81-86.
[9] 薛芳1,成志勇2,杨琳1,李世辉3,张颖1,潘崚1. 白血病耐药细胞系U937/ADR的建立及其生物学性状[J]. 中国生物工程杂志, 2009, 29(07): 17-21.
[10] 吴基良, 余薇, 汪晖, 刘超, 蔡飞. 大蒜多糖对中毒性心肌炎心肌细胞凋亡的影响[J]. 中国生物工程杂志, 2005, 25(3): 40-43,59.
[11] 石晶, 于建群. 基于MEMS技术的毛细管电泳芯片[J]. 中国生物工程杂志, 2003, 23(10): 89-92.