Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (3): 35-41    DOI: 10.13523/j.cb.20150305
研究报告     
Photosan脂质立方液晶纳米光敏剂的制备及光动力杀伤效应研究
付怀秀1,2, 于翔1, 康宏向2, 梁洁2, 陈鹏2, 沈本剑2, 金义光2, 熊力3, 毛建平1,2
1. 安徽医科大学研究生学院 合肥 230032;
2. 中国人民解放军军事医学科学院放射与辐射医学研究所 北京 100850;
3. 中南大学湘雅二医院 长沙 410083
Preparation of Photosensitizer-loaded Cubic Liquid Crystalline and Its Photodynamic Therapy Effects
FU Huai-xiu1,2, YU Xiang1, KANG Hong-xiang2, LIANG Jie2, CHEN Peng2, SHEN Ben-jian2, JIN Yi-guang2, XION Li3, MAO Jian-ping1,2
1. Graduate School of Anhui Medical University, Hefei 230032, China;
2. Institute of Radiation Medicine, Academy of Military Medical Science, Beijing 100850, China;
3. Department of General Surgery, Second Xiang Hospital, Central South University, Changsha 410083, China
 全文: PDF(1183 KB)   HTML
摘要:

目的:制备Photosan脂质立方液晶纳米光敏剂,通过体外实验探讨其介导的光动力疗法(photodynamic therapy, PDT)特异性杀伤肿瘤细胞效果.方法:以单油酸甘油酯(glyceryl monooleate, GMO)和泊洛沙姆407(poloxamer 407, P407)为液晶材料,以光敏剂Photosan为模型药物,制备Photosan立方液晶纳米粒,通过Malvern粒径仪和扫描电子显微镜等考察其理化性质;通过MTS法考察Photosan立方液晶纳米粒对正常肝细胞株和肝癌细胞株的暗毒性及光动力杀伤效果.结果:成功制备Photosan脂质立方液晶纳米粒,该纳米粒对人肝L-02细胞和人肝癌HepG2细胞均没有暗毒性,其介导的PDT对人肝L-02细胞增殖有一定抑制作用[细胞抑制率为(32.9±1.19)%],而对肝癌HepG2细胞增殖具有更显著的抑制作用[细胞抑制率为(77.9±2.06)%];Photosan立方液晶介导的光动力作用对人正常肝细胞的增殖抑制作用低于Photosan,但对肝癌细胞的增殖抑制作用高于Photosan.结论:Photosan脂质立方液晶纳米粒对人正常肝细胞安全性较好,对肝癌细胞的光动力杀伤效应明显优于Photosan,为光动力治疗癌症提供了创新性方法.

关键词: Photosan立方液晶人肝L-02细胞人肝癌HepG2细胞光动力疗法    
Abstract:

Objectives: To prepare photosensitizers-loaded Liquid Crystalline Nanoparticles, and study its cytotoxicity and photodynamic therapy (PDT) effects on tumor cells. Methods: Photosan Cubosomes were prepared with Glyceryl Monooleate (GMO), Poloxamer 407 (P407) and Photosan. Then the cubosomes were observed on the dynamic light scattering and scanning microscope. The photodymanic therapy effects and cytotoxicity of Photosan Cubosomes to L02 cells and HepG2 cells were studied by MTS assay. Results: Photosan Cubosomes were prepared successfully. The results showed that the blank cubosomes, Photosan and Photosan Cubosomes did not display any cellular toxicity against L-02 cells and HepG2 cells without laser irradiating; however, Liquid Crystalline Photosan mediated PDT by 5J/cm2 laser produced obvious inhibitory effects on HepG2 cells [inhibited (77.9±2.06)%] while showed slight inhibitory effects on L-02 cells [inhibited (32.9±1.19)%]. Moreover, Liquid Crystalline PhotosanPDT showed less damage on L-02 cells but stronger inhibitory effects on HepG2 than Photosan. Conclusions: New photosensitizer loaded Photosan Cubic Liquid Crystalline had higher security and stronger PDT effects on cancer cells and showed better characteristics than Photosan. It provided a novel method for cancer treatment by PDT.

Key words: Photosan    Cubosomes    Human L-02 hepatocyte    HepG2 cell    Photodynamic therapy
收稿日期: 2014-12-30 出版日期: 2015-03-25
ZTFLH:  R454.2  
通讯作者: 康宏向;毛建平     E-mail: maojp@mail.las.ac.cn;khx007@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

付怀秀, 于翔, 康宏向, 梁洁, 陈鹏, 沈本剑, 金义光, 熊力, 毛建平. Photosan脂质立方液晶纳米光敏剂的制备及光动力杀伤效应研究[J]. 中国生物工程杂志, 2015, 35(3): 35-41.

FU Huai-xiu, YU Xiang, KANG Hong-xiang, LIANG Jie, CHEN Peng, SHEN Ben-jian, JIN Yi-guang, XION Li, MAO Jian-ping. Preparation of Photosensitizer-loaded Cubic Liquid Crystalline and Its Photodynamic Therapy Effects. China Biotechnology, 2015, 35(3): 35-41.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150305        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I3/35


[1] Chen B, Roskams T, de Witte P A. Antivascular tumor eradication by hypericin-mediated photodynamic therapy. Photochem Photobiol, 2002, 76(5): 509-513.

[2] Harrod-Kim P. Tumor ablation with photodynamic therapy: introduction to mechanism and clinical applications. J Vasc Interv Radiol, 2006, 17(9): 1441-1448.

[3] Triesscheijn M, Baas P, Schellens J H, et al. Photodynamic therapy in oncology. Oncologist, 2006, 11(9): 1034-1044.

[4] Yano T, Hatogai K, Morimoto H, et al. Photodynamic therapy for esophageal cancer. Ann Transl Med, 2014, 2(3): 29.

[5] Wyss P, Schwarz V, Dobler-Girdziunaite D, et al. Photodynamic therapy of locoregional breast cancer recurrences using a chlorin-type photosensitizer. Int J Cancer, 2001, 93(5): 720-724.

[6] Rkein A M, Ozog D M. Photodynamic therapy. Dermatol Clin, 2014, 32(3):415-425.

[7] Liu Z T, Xiong L, Liu Z P, et al. In vivo and in vitro evaluation of the cytotoxic effects of Photosan-loaded hollow silica nanoparticles on liver cancer. Nanoscale Res Lett, 2014, 9(1):319.

[8] Pei D, Xiong L, Lin L, et al. Cytotoxicity of hollow silica nanoparticles loaded with photosensitizes on huh-7 cells. Pak J Pharm Sci, 2014, 27(3 Suppl): 719-722.

[9] Lopes L B, Lopes J L C, Oliveira D C R, et al. Liquid crystalline phases of monoolein and water for topical delivery of cyclosporin A: Characterization and study of in vitro and in vivo delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 63(2): 146-155.

[10] Maier A, Tomaselli F, Matzi V, et al. Comparison of 5-aminolaevulinic acid and porphyrin photosensitization for photodynamic therapy of malignant bronchial stenosis: a clinical pilot study. Lasers Surg Med, 2002, 30(1): 12-17.

[11] Wu H, Li J, Zhang Q, et al. A novel small Odorranalectin-bearing cubosomes: Preparation, brain delivery and pharmacodynamic study on amyloid-β25-35-treated rats following intranasal administration. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80(2): 368-378.

[12] Tong Z S, Miao P T, Liu T T, et al. Enhanced antitumor effects of BPD-MA-mediated photodynamic therapy combined with adriamycin on breast cancer in mice. Acta Pharmacol Sin, 2012, 33(10): 1319-1324.

[13] Temizel E, Sagir T, Ayan E, et al. Delivery of lipophilic porphyrin by liposome vehicles: preparation and photodynamic therapy activity against cancer cell lines. Photodiagnosis Photodyn Ther, 2014, 11(4): 537-545.

[14] Derycke A S, de Witte P A. Liposomes for photodynamic therapy. Adv Drug Deliv Rev, 2004, 56(1): 17-30.

[15] Deng X, Xiong L, Lin L, et al. Photosan-II loaded hollow silica nanoparticles: preparation and its effect in killing for QBC939 cells. Photodiagnosis Photodyn Ther, 2013, 10(4): 460-469.

[16] Haedicke K, Kozlova D, Grafe S, et al. Multifunctional calcium phosphate nanoparticles for combining near-infrared fluorescence imaging and photodynamic therapy. Acta Biomater, 2015, 14:197-207

[17] Wang W, Xu D, Wei X, et al. Magnetic-luminescent YbPO4:Er,Dy microspheres designed for tumor theranostics with synergistic effect of photodynamic therapy and chemotherapy. Int J Nanomedicine, 2014, 9: 4879-4891.

[18] Turchiello R, Vena F, Maillard P, et al. Cubic phase gel as a drug delivery system for topical application of 5-ALA, its ester derivatives and m-THPC in photodynamic therapy (PDT). Journal of Photochemistry and Photobiology B: Biology, 2003, 70(1): 1-6.

[19] Evenbratt H, Jonsson C, Faergemann J, et al. In vivo study of an instantly formed lipid–water cubic phase formulation for efficient topical delivery of aminolevulinic acid and methyl-aminolevulinate. International Journal of Pharmaceutics, 2013, 452(1-2): 270-275.

[20] Meerovich G, Meerovich I, Lukyanets E, et al. Influence of liposome size on accumulation in tumor and therapeutic efficiency of liposomal near-IR photosensitizer for PDT based on aluminum hydroxide tetra-3-phenylthiophthalocyanine. NSTI Nanotech, 2008, 2: 41-44.

[21] Shah J C, Sadhale Y, Chilukuri D M. Cubic phase gels as drug delivery systems. Adv Drug Deliv Rev, 2001, 47(2-3): 229-250.

[1] 韩雪怡,李一帆,陆玥达,熊国良,喻长远. 具有自噬抑制作用的卟啉金属有机框架的制备及其光动力癌症治疗的研究*[J]. 中国生物工程杂志, 2021, 41(11): 48-54.