Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (2): 99-104    DOI: 10.13523/j.cb.20150215
综述     
茄属生物碱的研究进展
王翠翠, 许蕙金兰, 傅达奇
中国农业大学食品科学与营养工程学院 北京 100083
The Research Progress of Alkaloids in Solanaceous Crops
WANG Cui-cui, XU Hui-jin-lan, FU Da-qi
College of Food Science and Nutrition Engineering, China Agriculture University, Beijing 100083, China
 全文: PDF(624 KB)   HTML
摘要:

甾体生物碱(SA)主要是茄属植物体内的一种次级代谢产物。它复杂的结构多样性决定了生物活性的多样性。它的合成途径也比较复杂,尚不十分清楚。以生物碱类化合物的化学结构为基础,对近几年来茄属生物碱的研究现状进行了简要综述。主要论述了茄属生物碱的化学结构、含量分布、生理活性以及与茄属生物碱合成途径相关的分子生物学研究。并分析了茄属生物碱今后的发展方向。以期为以后研究糖苷生物碱的生物合成途径、毒性机制、药理学作用等奠定一定的基础。

关键词: 茄属甾体生物碱基因生物合成途径    
Abstract:

Steroidal alkaloids(SA) is a kind of secondary metabolites in Solanaceous crops,its complicated structure determines the diversity of the biological activity,and its synthetic route is complicated.Based on the chemical structure of alkaloids compounts, the SA's physical and chemical properties,content distribution,physical activity and synthesis pathway related molecular biology research were mainly discussed.Finally, the development direction of the steroidal alkaloids in the future was analyzed, in order to help investigating the SA biosynthetic pathway,toxicity mechanism, and pharmacology function.

Key words: Solanum    Steroidal alkaloids    Gene    Biosynthetic pathway
收稿日期: 2014-12-11 出版日期: 2015-02-25
ZTFLH:  Q74  
基金资助:

国家"863"计划资助项目(2012AA101702)

通讯作者: 傅达奇     E-mail: daqifu@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王翠翠, 许蕙金兰, 傅达奇. 茄属生物碱的研究进展[J]. 中国生物工程杂志, 2015, 35(2): 99-104.

WANG Cui-cui, XU Hui-jin-lan, FU Da-qi. The Research Progress of Alkaloids in Solanaceous Crops. China Biotechnology, 2015, 35(2): 99-104.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150215        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I2/99


[1] 南京大学化学系有机化学教研室. 有机化学. 北京:高等教育出版社, 1988. 329. Organic chemistry teaching and reseach section in Nanjing university. Organic Chemistry.Beijing: Higher Education Press. 1988.329.

[2] Bowles D. A multigene family of glycosyltransferases in a model plant, Arabidopsis thaliana. Biochem Soc Trans, 2002, 30(2): 301-306.

[3] Friedman M. Tomato glycoalkaloids: role in the plant and in the diet. J Agric Food Chem, 2002, 50(21): 5751-5780.

[4] Arnqvist L, Dutta P C, Jonsson L, et al. Reduction of cholesterol and glycoalkaloid levels in transgenic potato plants by overexpression of a type 1 sterol methyltransferase cDNA. Plant Physiol, 2003, 131(4): 1792-1799.

[5] Kalinowska M, Zimowski J, Paczkowski C. The formation of sugar chains in triterpenoid saponinsand glycoalkaloids. Phytochem, 2005,4: 237-257.

[6] Bowles D, Lim E K, Poppenberger B, et al. Glycosyltransferases of lipophilic small molecules. Annu Rev Plant Biol, 2006, 57: 567-597.

[7] Friedman M. Potato glycoalkaloids and metabolites: roles in the plant and in the diet. J Agric Food Chem, 2006, 54(23): 8655-8681.

[8] Kozukue N, Yoon K S, Byun G I, et al. Distribution of glycoalkaloids in potato tubers of 59 accessions of two wild and five cultivated Solanum species. J Agric Food Chem, 2008, 56(24): 11920-11928.

[9] Mennella G, Rotino G L, Fibiani M, et al. Characterization of health-related compounds in eggplant (Solanum melongena L.) lines derived from introgression of allied species. J Agric Food Chem, 2010, 58(13): 7597-7603.

[10] Blankemeyer J T, Mcwilliams M L, Rayburn J R, et al. Developmental toxicology of solamargine and solasonine glycoalkaloids in frog embryos. Food Chem Toxicol, 1998, 36(5): 383-389.

[11] Blankemeyer J T, White J B, Stringer B K, et al. Effect of alphatomatine and tomatidine on membrane potential of frog embryos and active transport of ions in frog skin. Food Chem Toxicol, 1997,35(10):639-646.

[12] Friedman M, Levin C E, Lee S U, et al. Tomatine-containing green tomato extracts inhibit growth of human breast, colon, liver, and stomach cancer cells. J Agric Food Chem, 2009, 57(13): 5727-5733.

[13] Ikeda T, Ando J, Miyazono A, et al. Anti-herpes virus activity of Solanum steroidal glycosides. Biol Pharm Bull, 2000, 23(3): 363-364.

[14] Milner S E, Brunton N P, Jones P W, et al. Bioactivities of glycoalkaloids and their aglycones from Solanum species. J Agric Food Chem, 2011, 59:3454-3484.

[15] Mckee R K. Factors affecting the toxicity of solanine and related alkaloids to Fusarium caeruleum. J Gen Microbiol, 1959, 20(3): 686-696.

[16] Steel C C, Drysdale R B. Electrolyte leakage from plant and fungal tissues and disruption of liposome membranes by α-tomatine. Phytochem, 1988, 27:1025-1030.

[17] Keukens E A, de Vrije T, Fabrie C H, et al. Dual specificity of sterol-mediated glycoalkaloid induced membrane disruption. Biochim Biophys Acta, 1992, 1110(2): 127-136.

[18] Keukens E A, de Vrije T, van den Boom C, et al. Molecular basis of glycoalkaloid induced membrane disruption. Biochim Biophys Acta, 1995, 1240(2): 216-228.

[19] Dolan L C, Matulka R A, Burdock G A. Naturally occurring food toxins. Toxins (Basel),2010, 2(9): 2289-2332.

[20] 李志文,周宝利,刘翔,等.茄科植物体内糖苷生物碱的生理生态活性研究进展.上海农业学报,2011,27(3):129-134. Li Z W,Zhou B L,Liu X,et al. The physiological ecology research progress of glycoalkaloids in Solanaceous crops.Acta Agriculturae Shanghai,2011,27(3):129-134.

[21] Norma F H, Luz Maria R V, Daniel G M. Computational note on the calculation of the dipolemoment, polarizability and hyperpolarizability of solanidine. Journal of Molecular Structure, Theochem, 2008, 849(30):122-123.

[22] Yoko I,Bunta W,Ryosuke S,et al. Steroidal glycoalkaloid profiling and structures of glycoalkaloids in wild tomato fruit.Phytochem,2013,95:145-157.

[23] Itkin M, Rogachev I, Alkan N, et al. Glycoalkaloid metabolism1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. Plant Cell, 2011, 23(12): 4507-4525.

[24] Alice M M,Danielle H,Rebecca P,et al, Steroidal glycoalkaloids in Solanum chacoense.Phytochem, 2012,75:32-40.

[25] John P, Munafo J, Thomas J Gianfagna. Antifungal activity and fungal metabolism of steroidal glycosides of easter lily (Lilium longiflorum Thunb.) by the plant pathogenic fungus, Botrytis cinerea.J Agri Food Chem, 2011, 59: 5945-5954

[26] Christopher A, Hobby H T, Cipollini M. Efficacy and mechanisms of α-solasonine and α-solamargine-induced cytolysis on two strains of Trypanosoma cruzi.Journal of Chemical Ecology, 2004, 32(11):2405-2416.

[27] Miranda M A, Magalh L G, Tiossi R F J. Evaluation of the schistosomicidal activity of the steroidal alkaloids from Solanum lycocarpum fruits. Parasitol Res, 2012,12:257-262.

[28] Hisen C C, Fang H L, Lina W C. Inhibitory effect of Solanum nigrum on thioacetamide-induced liver fibrosis in mice. J Ethnopharmacol, 2008, 119(1): 117-121.

[29] Ding X, Zhu F, Yang Y, et al. Purification, antitumor activity in vitro of steroidal glycoalkaloids from black nightshade (Solanum nigrum L.). Food Chem, 2013, 141(2): 1181-1186.

[30] Friedman M, Fitch T E, Yokoyama W E. Lowering of plasma LDL cholesterol in hamsters by the tomato glycoalkaloid tomatine. Food Chem Toxicol, 2000, 38(7): 549-553.

[31] 陶永霞,刘洪海,王忠民,等. 番茄碱的研究现状及应用前景. 现代食品科技, 2006,22(2):253-256. Tao Y X, Liu H H,Wang Z M,et al.The present research situation and application prospect of tomatine.Modern Food Science and Technology,2006,22(2):253-256.

[32] Shakya R, Navarre D A. LC-MS analysis of solanidane glycoalkaloid diversity among tubers of four wild potato species and three cultivars (Solanum tuberosum). J Agric Food Chem, 2008, 56(16): 6949-6958.

[33] Arnqvist L, Dutta P C, Jonsson L, et al. Reduction of cholesterol and glycoalkaloid levels in transgenic potato plants by overexpression of a type 1 sterol methyltransferase cDNA. Plant Physiol, 2003, 131(4): 1792-1799.

[34] Moehs C P, Allen P V, Friedman M, et al. Cloning and expression of solanidine UDP-glucose glucosyltransferase from potato. Plant J, 1997, 11(2): 227-236.

[35] Rockhold D R, Corsini D L, Davies H V, et al. Metabolic compensation of steroidal glycoalkaloid biosynthesis in transgenic potato tubers: using reverse genetics to confirm the in vivo enzyme function of a steroidal alkaloid galactosyltransferase.Plant Sci, 2005, 168:267-273.

[36] Mccue K F, Allen P V, Shepherd L V, et al. The primary in vivo steroidal alkaloid glucosyltransferase from potato. Phytochem, 2006, 67(15): 1590-1597.

[37] Ginzberg I, Thippeswamy M, Fogelman E, et al. Induction of potato steroidal glycoalkaloid biosynthetic pathway by overexpression of cDNA encoding primary metabolism HMG-CoA reductase and squalene synthase. Planta, 2012, 235(6): 1341-1353.

[38] Itkin M, Heinig U, Tzfadia O,et al. Biosynthesis of antinutritional alkaloids in Solanaceous crops is mediated by clustered.Genes Science, 2013,341:175-179.

[1] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[2] 贺立恒,张毅,张洁,任豫超,解红娥,唐锐敏,贾小云,武宗信. 基于转录组和WGCNA的甘薯花青素合成相关基因共表达网络的构建及核心基因的挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 27-36.
[3] 陈亚超,李楠楠,刘子迪,胡冰,李春. 源于甘草内生菌的甘草酸合成相关功能基因的宏基因组挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 37-47.
[4] 杨柳,牟豪,许国洋,白运川,余远迪. 培养山羊痘病毒常用细胞在X-gal环境中的显色差异分析*[J]. 中国生物工程杂志, 2021, 41(9): 48-54.
[5] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[6] 王晓洁,孟凡强,周立邦,吕凤霞,别小妹,赵海珍,陆兆新. 利用基因组改组技术提高短杆菌素产量及其培养条件优化*[J]. 中国生物工程杂志, 2021, 41(8): 42-51.
[7] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[8] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[9] 梁晋刚,张旭冬,毕研哲,王颢潜,张秀杰. 转基因抗虫玉米发展现状与展望*[J]. 中国生物工程杂志, 2021, 41(6): 98-104.
[10] 胡暄,王松,于学玲,张晓鹏. 不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 17-26.
[11] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[12] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[13] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[14] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[15] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.