Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (2): 84-91    DOI: 10.13523/j.cb.20150213
综述     
冠状病毒反向遗传操作技术及其应用进展
申梁, 谭文杰
中国疾病预防控制中心 病毒病预防控制所病毒应急技术中心 北京 102206
Progress on the Technique and its Application of Reverse Genetics for Coronaviruses
SHEN Liang, TAN Wen-jie
Biotech Center for Viral Disease Emergency, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
 全文: PDF(741 KB)   HTML
摘要:

冠状病毒广泛存于自然界中,人和多种动物均易感。虽然冠状病毒具有相对严格的宿主特异性,但是其广泛的宿主性及其自身基因组的结构特性使得该病毒在进化过程中极易发生基因重组和突变,新型冠状病毒在此过程中不断出现。近年来,反向遗传学技术的发展为冠状病毒跨种属传播及致病机制、疫苗以及抗病毒药物的研发开辟了新的思路。对冠状病毒反向遗传操作技术的进展及其应用现状进行了简要综述与展望。

关键词: 冠状病毒反向遗传学技术应用    
Abstract:

Coronaviruses (CoVs) are a large family of viruses which threaten the health of humans and many animal species. Even though CoVs have high host specificity, novel subtype of CoVs emerge constantly due to their wide rang hosts and their special gene replication and transcription mechanisms. Currently the priority is to strengthen the research in pathogenesis and transmission mechanisms, as well as to develop vaccine and antiviral drugs. Recently, the applications of reverse genetics(RV) open up a new way for research of genomic functions of CoVs and development of novel vaccines against CoVs. The progress and application of different RV platforms developed for CoVs were focused, and the prospective aspects in the application of RV for CoVs were also discussed.

Key words: Coronaviruses    Reverse genetics    Application
收稿日期: 2014-10-11 出版日期: 2015-02-25
ZTFLH:  Q789  
基金资助:

传染病防治重大专项(2013ZX10004601,2014ZX10004-002)资助项目

通讯作者: 谭文杰     E-mail: tanwj28@yahoo.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

申梁, 谭文杰. 冠状病毒反向遗传操作技术及其应用进展[J]. 中国生物工程杂志, 2015, 35(2): 84-91.

SHEN Liang, TAN Wen-jie. Progress on the Technique and its Application of Reverse Genetics for Coronaviruses. China Biotechnology, 2015, 35(2): 84-91.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150213        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I2/84


[1] King A M, Adams M J, Carstens E B, et al.Virus taxonomy: classification and nomenclature of viruses: Ninth Report of the International Committee on Taxonomy of Viruses. San Diego, CA: Elsevier Academic Press, 2012.

[2] Zaki A M, van Boheemen S, Bestebroer T M, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med, 2012, 367(19): 1814-1820.

[3] Enjuanes L, Almazán F, Sola I, et al. Biochemical aspects of coronavirus replication and virus-host interaction. Annu Rev Microbiol, 2006, 60: 211-230.

[4] Masters PS. The molecular biology of coronaviruses. Adv Virus Res, 2006, 48(6): 193-292.

[5] Fu K, Baric R S. Map locations of mouse hepatitis virus temperature-sensitive mutants: confirmation of variable rates of recombination. J Virol, 1994, 68(11): 7458-7466.

[6] Masters PS. Reverse genetics of the largest RNA viruses. Adv Virus Res, 1999, 53: 245-264.

[7] Baric R S, Fu K S, Schaad M C, et al. Establishing a genetic recombination map for MHV-A59 complementation groups. Virology, 1990, 177(2): 646-656.

[8] Kusters J G, Jager E J, Niesters H G, et al. Sequence evidence for RNA recombination in field isolates of avian coronavirus infectious bronchitis virus. Vaccine, 1990, 8(6): 605-608.

[9] Makino S, Keck J G, Stohlman S A, et al. High-frequency RNA recombination of murine coronaviruses. J Virol, 1986, 57(3): 729-737.

[10] Almazán F, Gonzalez J M, Penzes Z, et al. Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci USA, 2000, 97(10): 5516-5521.

[11] Almazán F, DeDiego M L, Galan C, et al. Construction of a SARS-CoV infectious cDNA clone and a replicon to study coronavirus RNA synthesis. J Virol, 2006, 80(21): 10900-10906.

[12] St-Jean J R, Desforges M, Almazán F, et al. Recovery of a neurovirulent human coronavirus OC43 from an infectious cDNA clone. J Virol, 2006, 80(7): 3670-3674.

[13] Balint A, Farsang A, Zadori Z, et al. Molecular characterization of feline infectious peritonitis virus Strain DF-2 and studies of the role of ORF3 abc in viral cell tropism. J Virol, 2012, 86(11): 6258-6267.

[14] Almazán F, DeDiego M L, Sola I, et al. Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate. mBio, 2013, 4(5): e00650-13.

[15] Pfefferle S, Krahling V, Ditt V, et al. Reverse genetic characterization of the natural genomic deletion in SARS-coronavirus strain Frankfurt-1 open reading frame 7b reveals an attenuating function of the 7b protein in vitro and in vivo. Virol J, 2009, 6: 131.

[16] Yount B, Curtis K M, Baric R S. Strategy for systematic assembly of large RNA and DNA genomes: transmissible gastroenteritis virus model. J Virol, 2000, 74(22): 10600-10611.

[17] Becker M M, Graham R L, Donaldson E F, et al. Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice. Proc Natl Acad Sci USA, 2008, 105(50): 19944-19949.

[18] Scobey T, Yount B L, Sims A C, et al. Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc Natl Acad Sci USA, 2013, 110(40): 16157-16162.

[19] Yount B, Denison M R, Weiss S R, et al. Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59. J Virol, 2002, 76(21): 11065-11078.

[20] Fang S, Chen B, Tay F P, et al. An arginine-to-proline mutationin a domain with undefined functions within the helicase protein (Nsp13) is lethal to the coronavirus infectious bronchitis virus in cultured cells. Virology, 2007, 358(1): 136-147.

[21] Tan Y W, Fang S, Fan H, et al. Amino acid residues critical for RNA-binding in the N-terminal domain of the nucleocapsid protein are essential determinants for the infectivity of coronavirus in cultured cells. Nucleic Acids Res, 2006, 34(17): 4816-4825.

[22] Donaldson E F, Yount B, Sims A C, et al. Systematic assembly of a full-length infectious clone of human coronavirus NL63. J Virol, 2008, 82(23): 11948-11957.

[23] Thiel V, Herold J, Schelle B, et al. Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. J Gen Virol, 2001, 82(6): 1273-1281.

[24] Casais R, Thiel V, Siddell S G, et al. Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol, 2001, 75(24): 12359-12369.

[25] Coley S E, Lavi E, Sawicki S G, et al. Recombinant mouse hepatitis virus strain A59 from cloned, full-length cDNA replicates to high titers in vitro and is fully pathogenic in vivo. J Virol, 2005, 79(5): 3097-3106.

[26] Teke G, Hofmann-Lehmann R, Stallkamp I, et al. Genome organization and reverse genetic analysis of a type I feline coronavirus. J Virol, 2008, 82(4): 1851-1859.

[27] van den Worm S H, Eriksson K K, Zevenhoven J C, et al. Reverse genetics of SARS-related coronavirus using vaccinia virus-based recombination. PLoS ONE, 2012, 7(3): e32857.

[28] Merchlinsky M, Moss B. Introduction of foreign DNA into the vaccinia virus genome by in vitro ligation: recombination-independent selectable cloning vectors. Virology, 1992, 190(1): 522-526.

[29] Carroll M W, Moss B. Poxviruses as expression vectors. Curr Opin Biotechnol, 1997, 8(5): 573-577.

[30] Wathelet M G, Orr M, Frieman M B, et al. Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. J Virol, 2007, 81(21): 11620-11633.

[31] Frieman M, Yount B, Agnihothram S, et al. Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease. J Virol, 2012, 86(2): 884-897.

[32] Pfefferle S, Krähling V, Ditt V, et al. Reverse genetic characterization of the natural genomic deletion in SARS-Coronavirus strain Frankfurt-1 open reading frame 7b reveals an attenuating function of the 7b protein in vitro and in vivo. Virol J, 2009, 6: 131.

[33] Kuo L, Masters PS. The small envelope protein E is not essential for murine coronavirus replication. J Virol, 2003, 77(8): 4597-4608.

[34] Jimenez-Guardeño J M, Nieto-Torres J L, DeDiego M L, et al. The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. PLoS Pathog, 2014, 10(8): e1004320.

[35] Casais R, Dove B, Cavanagh D, et al. Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. J Virol, 2003, 77(16): 9084-9089.

[36] Bouvet M, Lugari A, Posthuma C C, et al. Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes. J Biol Chem, 2014, 289(37): 25783-25796.

[37] Graham R L, Sims A C, Brockway S M, et al. The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication. J Virol, 2005, 79(21): 13399-13411.

[38] Cruz J L, Sola I, Becares M, et al. Coronavirus gene 7 counteracts host defenses and modulates virus virulence. PLoS Pathog, 2011, 7(6): e1002090.

[39] DeDiego M L, Alvarez E, Almazán F, et al. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo.J Virol, 2007, 81(4):1701-1713.

[40] Netland J, DeDiego M L, Zhao J, et al. Immunization with an attenuated severe acute respiratory syndrome coronavirus deleted in E protein protects against lethal respiratory disease. Virology, 2010, 399(1): 120-128.

[41] Fett C, DeDiego M L, Regla-Nava J A, et al. Complete protection against severe acute respiratory syndrome coronavirus-mediated lethal respiratory disease in aged mice by immunization with a mouse-adapted virus lacking E protein. J Virol, 2013, 87(12): 6551-6559.

[42] Cavanagh D, Casais R, Armesto M, et al. Manipulation of the infectious bronchitis coronavirus genome for vaccine development and analysis of the accessory proteins. Vaccine, 2007, 25(30): 5558-5562.

[43] Ribes J M, Ortego J, Ceriani J, et al. Transmissible gastroenteritis virus (TGEV)-based vectors with engineered murine tropism express the rotavirus VP7 protein and immunize mice against rotavirus. Virology, 2011, 410(1): 107-118.

[44] Graham R L, Becker M M, Eckerle L D, et al. A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nat Med, 2012, 18(12): 1820-1826.

[45] Wang J M, Wang L F, Shi Z L. Construction of a non-infectious SARS coronavirus replicon for application in drug screening and analysis of viral protein function. Biochem Biophys Res Commun, 2008, 374(1): 138-142.

[46] Adedeji A O, Singh K, Calcaterra N E, et al. Severe acute respiratory syndrome coronavirus replication inhibitor that interferes with the nucleic acid unwinding of the viral helicase. Antimicrob Agents Chemother, 2012, 56(9): 4718-4728.

[47] Carbajo-Lozoya J, Müller M A, Kallies S, et al. Replication of human coronaviruses SARS-CoV, HCoV-NL63 and HCoV-229E is inhibited by the drug FK506. Virus Res, 2012, 165(1): 112-117.

[48] Kilianski A, Baker S C. Cell-based antiviral screening against coronaviruses: developing virus-specific and broad-spectrum inhibitors. Antiviral Res, 2014, 101: 105-112.

[1] 贠涛,巩玥,谷芃,徐冰冰,李瑾,赵洗尘. 中国与“一带一路”参与国家抗击新冠肺炎疫情的国际科技合作现状与展望[J]. 中国生物工程杂志, 2021, 41(7): 110-121.
[2] 郑婕,吴昊,乔建军,朱宏吉. 革兰氏阳性菌荚膜多糖研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 91-98.
[3] 史瑞,严景华. 抗新型冠状病毒单克隆中和抗体药物研发进展*[J]. 中国生物工程杂志, 2021, 41(6): 129-135.
[4] 张赛,王刚,刘仲明,李辉军,汪大明,钱纯亘. 新型冠状病毒胶体金抗原快速检测试剂的研制及性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 27-34.
[5] 陈莹,李谦. 特殊酵母工业应用专利发展态势分析[J]. 中国生物工程杂志, 2021, 41(4): 91-99.
[6] 范月蕾,王跃,王恒哲,李丹丹,毛开云. 新型冠状病毒体外诊断技术研发现状与展望 *[J]. 中国生物工程杂志, 2021, 41(2/3): 150-161.
[7] 张赛,向乐,李林海,李辉军,王刚,钱纯亘. 新型冠状病毒(2019-nCoV)IgM /IgG抗体检测试剂的研制及性能评价[J]. 中国生物工程杂志, 2020, 40(8): 1-9.
[8] 谢华玲,吕璐成,杨艳萍. 全球冠状病毒疫苗专利分析[J]. 中国生物工程杂志, 2020, 40(1-2): 57-64.
[9] 巩玥,廖青云,于倩倩,史志祥,陈菁,张宇辉,赵光慧. 冠状病毒研究态势分析[J]. 中国生物工程杂志, 2020, 40(1-2): 21-37.
[10] 赵萍,杨艳萍. 人冠状病毒感染诊断技术专利态势分析[J]. 中国生物工程杂志, 2020, 40(1-2): 51-56.
[11] 李东巧,吕璐成,杨艳萍. 全球人冠状病毒抗体领域研发现状与发展趋势[J]. 中国生物工程杂志, 2020, 40(1-2): 65-70.
[12] 程永庆,刘金毅,林福玉,童梅. 重组人干扰素α1b与新型冠状病毒肺炎防治[J]. 中国生物工程杂志, 2020, 40(1-2): 71-77.
[13] 王国强,于茵茵,曾华辉,王旭东,吴玉彬,尚立芝,李玉林,张怡青,张西西,张振强,王云龙. 基于MS2噬菌体病毒样颗粒的RT-PCR检测新型冠状病毒(SARS-CoV-2)质控品制备*[J]. 中国生物工程杂志, 2020, 40(12): 31-40.
[14] 林福玉,刘金毅,程永庆. 重组人干扰素α1b抗新型冠状病毒的基础和临床研究进展[J]. 中国生物工程杂志, 2020, 40(12): 1-7.
[15] 陈利军,屈晶晶,项春生. 间充质干细胞在2019新型冠状病毒肺炎(COVID-19)中的治疗潜能、临床研究与应用前景*[J]. 中国生物工程杂志, 2020, 40(11): 43-55.