Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (8): 105-111    DOI: 10.13523/j.cb.20140816
综述     
枯草芽胞杆菌芽胞表面展示研究进展
谢志丹1, 范稳1, 贾东晨1, 杨娜1, 夏振远2, 乔敏1
1. 云南大学微生物保护与利用重点实验室 昆明 650091;
2. 云南省烟草农业科学研究院 昆明 650091
Recent Developments in Spore Surface Display of Bacillus subtilis
XIE Zhi-dan1, FAN Wen1, JIA Dong-cheng1, YANG Na1, XIA Zheng-yuan2, QIAO Min1
1. Key Laboratory for Conservation and Utilization of Bio-Resource, Yunnan University, Kunming 650091, China;
2. Yunnan Tobacco Research Institute of Agricultural Science, Kunming 650091, China
 全文: PDF(570 KB)   HTML
摘要:

枯草芽胞杆菌芽胞表面展示技术是把枯草芽胞杆菌作为芽胞表面展示的宿主来展示目的蛋白的一种技术。该技术不仅具备芽胞表面展示技术可展示分子量较大的目的蛋白、目的蛋白无需跨膜及芽胞的极强抗逆性等特点外,同时由于该技术的宿主菌——枯草芽胞杆菌的分子生物学信息研究得比较清楚、安全性高而被广泛应用。介绍了枯草芽胞杆菌表面展示近10年在生产疫苗和固定化酶方面的进展,并对如何提高表面展示目的蛋白的产量做了简要概述。

关键词: 表面展示枯草芽胞杆菌抗原锚定蛋白    
Abstract:

Bacillus subtilis spore display, a technique that presents proteins or peptides on the surface of the spore of Bacillus subtilis, enables high-throughput screening and has become an essential tool in bimolecular engineering. The major advantage of spores over the other published systems is their synthesis within the cytoplasm of the bacterial cell. Therefore, any heterologous protein to be anchored on the outside does not have to cross any membrane. Furthermore,spores are extremely resistant against high temperature, irradiation and many chemicals, and can be stored for many years at room temperature. With the advantage of complete genome information and security, Bacillus subtilis spore display now is attracting more and more attention. The following describes the recent progress of surface of Bacillus subtilis in the produce of vaccines and the immobillzed enzyme, and present a brief overview about how to improve the yield of the target protein surface display.

Key words: Surface display    Bacillus subtilis    Antigen    Anchoring protein
收稿日期: 2014-05-23 出版日期: 2014-08-25
ZTFLH:  Q819  
基金资助:

国家自然科学基金(31360130)、云南省烟草公司科技计划项目(2012YN06)资助项目

通讯作者: 乔敏,E-mail:mingqiao@ynu.edu.cn     E-mail: mingqiao@ynu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

谢志丹, 范稳, 贾东晨, 杨娜, 夏振远, 乔敏. 枯草芽胞杆菌芽胞表面展示研究进展[J]. 中国生物工程杂志, 2014, 34(8): 105-111.

XIE Zhi-dan, FAN Wen, JIA Dong-cheng, YANG Na, XIA Zheng-yuan, QIAO Min. Recent Developments in Spore Surface Display of Bacillus subtilis. China Biotechnology, 2014, 34(8): 105-111.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140816        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I8/105


[1] 余小霞, 田健, 伍宁丰.枯草芽胞杆菌芽胞表面展示外源蛋白的研究进展. 中国农业科技导报, 2013, 15(5):31-38. Yu X X, Tian J, Wu N F. Research progress of surface display of proteins on Bacillus subtilis spores. Review Chinese Agricultural Science and Technology, 2013, 15(5):31-38.

[2] Pan J G, Kim E J, Yun C H. Bacillus spore display. Trends Biotechnol, 2012, 30(12):610-612.

[3] Isticato R, Cangiano G, Tran H T, et al.Surface display of recombinant proteins on Bacillus subtilis spores. J Bacteriol, 2001, 183(21):6294-6301.

[4] 徐小曼, 王啸辰, 马翠卿.芽胞表面展示技术研究进展. 生物工程学报, 2010, 26(10):1404-1409. Xu X M, Wang X C, Ma C Q. Recent progress of the research on spore surface display. Journal of Biotechnology, 2012, 26(10): 1404-1409.

[5] Thompson B M, Stewart G C. Targeting of the BclA and BclB proteins to the Bacillus anthracis spore surface. Molecular Microbiology, 2008, 70(2):421-434.

[6] Kim J, Schumann W. Display of proteins on Bacillus subtilis endospores. Cellular and Molecular Life Sciences, 2009, 66(19):3217-3136.

[7] Bull A T, Goodfellow M, Slater J H. Biodiversity as a source of innovation in biotechnology. Annual Reviews in Microbiology, 1992, 46(1):219-246.

[8] Slepecky R, Leadbetter E. On the prevalence and roles of spore-forming bacteria and their spores in nature.Biochimica et Biophysica Acta, 1983, 528(3):288297.

[9] Kim J, Schumann W. Display of proteins on Bacillus subtilis endospores. Cellular and Molecular Life Sciences, 2009, 66(19):3127-3136.

[10] Isticato R, Pelosi A, Baccigalupi L, et al. CotC-CotU heterodimerization during assembly of the Bacillus subtilis spore coat. J Bacteriol, 2008, 190(4):1267-1275.

[11] Isticato R, Esposito G, Nolasco S, et al. Assembly of multiple CotC forms into the Bacillus subtilis spore coat. J Bacteriol, 2004, 186(4):1129-1135.

[12] Sacco M, Ricca E, Losick R, et al. An additional GerE controlled gene encoding an abundant spore coat protein from Bacillus subtilis. Journal of Bacteriology, 1995, 177(2):372-337.

[13] Holt S, Leadbetter E. Comparative ultrastructure of selected aerobic spore-forming bacteria: a freeze-etching study. Bacteriological Reviews, 1969, 33(2):346.

[14] Driks A. Maximum shields: the assembly and function of the bacterial spore coat. Trends Microbiol, 2002, 10(6):251-254.

[15] Lee S Y, Choi J H, Xu Z. Microbial cell-surface display. Trends Biotechnol, 2003, 21(1):45-52.

[16] Ban J, JuneHyung, ByungGee, et al. Method for expression of proteins on spore surface. South-Korea, KR20030065534, 2003.

[17] Hinc K, Iwanicki A, Obuchowski M. New stable anchor protein and peptide linker suitable for successful spore surface display in B. subtilis. Microb Cell Fact, 2013, 12:22.

[18] 李倩, 宁德刚, 吴春笃. 以 CotX 为分子载体在枯草芽胞杆菌芽胞表面展示绿色荧光蛋白. 生物工程学报, 2010, 26(2):264-269. Li Q, Ning D G, Wu C D. Surface display of GFP using CotX as a molecular vector on Bacillus subtilis spores. Journal of Biotechnology, 2010, 26(2):264-269.

[19] 王晓阁. 枯草芽孢杆菌研究进展与展望. 中山大学研究生学刊: 自然科学与医学版, 2013, 33(3):14-23. Wang X G. Research progress of Bacillus subtilis. Journal of the Graduates Sun YAT-SEN University, 2013, 33(3):14-23.

[20] Kwon S J, Jung H X, Pan J G, Transgalactosylation in a water-solvent biphasic reaction system with β-galactosidase displayed on the surfaces of Bacillus subtilis spores. Appl Environ Microbiol, 2007, 73(7):2251-2256.

[21] Fang Y, Xu W, Wu J, et al. Enzymatic transglycosylation of PEG brushes by β-galactosidase. Chemical Communications, 2012, 48(91):11208-11210.

[22] Kim J H. Lee C S, Kim B G. Spore-displayed streptavidin: a live diagnostic tool in biotechnology. Biochemical and Biophysical Research Communications, 2005, 331(1):210-214.

[23] Uyen N Q, Hong H A, Cutting S M. Enhanced immunisation and expression strategies using bacterial spores as heat-stable vaccine delivery vehicles. Vaccine, 2007, 25(2):356-365.

[24] Duc L H, Hong H A, Fairweather N, et al. Bacterial spores as vaccine vehicles. Infection and Immunity, 2003, 71(5):2810-2818.

[25] Ciabattini A, Riccardo Parigia, Rechele Isticatob, et al. Oral priming of mice by recombinant spores of Bacillus subtilis. Vaccine, 2004, 22(31):4139-4143.

[26] Flick-Smith Helen C, Eyles A, et al. Mucosal or parenteral administration of microsphere-associated Bacillus anthracis protective antigen protects against anthrax infection in mice. Infection and Immunity, 2002, 70(4):2022-2028.

[27] Ivins B, MariaLuz Pombob, Leslie Wagnera, et al. Immunization against anthrax with Bacillus anthracis protective antigen combined with adjuvants. Infection and Immunity, 1992, 60(2):662-668.

[28] Ivins B, Pitt M L, Fellows P F, et al. Comparative efficacy of experimental anthrax vaccine candidates against inhalation anthrax in Rhesus macaques. Vaccine, 1998, 16(11):1141-1148.

[29] Negri A, Wojciech Potocki, Adam Iwanicki, et al. Expression and display of Clostridium difficile protein FliD on the surface of Bacillus subtilis spores. Journal of Medical Microbiology, 2013, 62(Pt 9):1379-1385.

[30] Kim J H, Roh C, Lee C W, et al. Bacterial surface display of GFP(uv) on bacillus subtilis spores. Journal of Microbiology and Biotechnology, 2007, 17(4):677-680.

[31] Strauss A, Götz F. In vivo immobilization of enzymatically active polypeptides on the cell surface of Staphylococcus carnosus. Molecular Microbiology, 1996, 21(3):491-500.

[32] 郭夏丽, 狄源宁, 王岩.枯草芽孢杆菌产芽孢条件的优化. 中国土壤与肥料, 2012, 3:99-103. Guo X L, Di Y N, Wang Y. The optimization of pruduce spores of Bacillus subtilis. Chinese Soil and Fertilizer, 2012, 3:99-103

[33] 甄静, 郭直岳, 谢宝恩.枯草芽孢杆菌 XK-1 产芽孢条件的优化. 中国农学通报, 2012, 28(27):146-151. Zhen J, Guo Z Y, Xie B E. The optimization of pruduce spores of a Bacillus subtilis named XK-1. Chinese Agricultural Science Bulletin, 2012, 28(27):146-151.

[1] 康可人,袁强,梁飞敏,伍丽贤. 苄非他明人工抗原合成[J]. 中国生物工程杂志, 2021, 41(7): 58-65.
[2] 陈晨,胡劲超,曹姗姗,门冬. 新型冠状病毒抗原快速检测研发现状及展望*[J]. 中国生物工程杂志, 2021, 41(6): 119-128.
[3] 张赛,王刚,刘仲明,李辉军,汪大明,钱纯亘. 新型冠状病毒胶体金抗原快速检测试剂的研制及性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 27-34.
[4] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[5] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[6] 徐应永. 基因治疗产品的开发现状与挑战[J]. 中国生物工程杂志, 2020, 40(12): 95-103.
[7] 刀凤亭,杨璐,王亚哲,常艳,袁晓英,李玲娣,陈文敏,龙玲玉,刘艳荣,秦亚溱. 成人t(8;21)急性髓系白血病患者初诊Ki-67的表达特征及预后意义 *[J]. 中国生物工程杂志, 2019, 39(9): 11-18.
[8] 陈曼,王爱先,傅旻婧,吴雪英,甄军毅,宫美维,郭亚,王卉. CAR细胞疗法在T细胞-急性淋巴细胞白血病应用的新进展[J]. 中国生物工程杂志, 2019, 39(9): 103-107.
[9] 区裕升,郑红俊,钟时,李懿. TAEST16001:TCR亲和力增强型特异性T细胞免疫治疗[J]. 中国生物工程杂志, 2019, 39(2): 49-61.
[10] 王艺颖,程海荣. 解脂耶氏酵母细胞表面展示乳糖水解酶高效水解乳糖 *[J]. 中国生物工程杂志, 2018, 38(8): 41-49.
[11] 陈军军,娄颖,张元兴,刘琴,刘晓红. 增殖细胞核抗原蛋白在Spodoptera frugiperda昆虫细胞中的表达及纯化 *[J]. 中国生物工程杂志, 2018, 38(7): 14-20.
[12] 何亚南,孙钰椋,任雅坤,梁盛英,杨芬,刘彦礼,林俊堂. 金黄色葡萄球菌类肠毒素K与GFP融合蛋白工程菌的构建及其表达蛋白生物学活性分析 *[J]. 中国生物工程杂志, 2018, 38(12): 14-20.
[13] 李容庆,权春善,张丽影,刘佳璐,张祥,尚菲. 人工抗原合成研究进展*[J]. 中国生物工程杂志, 2018, 38(12): 65-75.
[14] 孙文佳, 姚宇峰, 杨旭, 黄惟巍, 刘存宝, 龙琼, 褚晓杰, 马雁冰. 乙肝核心抗原病毒样颗粒呈现HPV 16L1抗原表位及特异抗体诱导[J]. 中国生物工程杂志, 2017, 37(3): 58-64.
[15] 李超, 刘波, 陶玉芬, 李昕潼, 刘建生, 刘红旗. EV71病毒中和表位和诺如病毒P结构域嵌合蛋白的原核表达[J]. 中国生物工程杂志, 2017, 37(1): 1-6.