Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (8): 97-104    DOI: 10.13523/j.cb.20140815
综述     
微生物发酵生产C4二元羧酸研究进展
徐国强1,2,3, 吴满珍1,3
1. 江南大学 粮食发酵工艺与技术国家工程实验室 无锡 214122;
2. 江南大学工业生物技术教育部重点实验室 无锡 214122;
3. 江南大学生物工程学院 无锡 214122
A Review for Microbial Production of C4 Dicarboxylatic Acids
XU Guo-qiang1,2,3, WU Man-zhen1,3
1. National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wusi 214122, China;
2. The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wusi 214122, China;
3. School of Biotechnology, Jiangnan University, Wuxi 214122, China
 全文: PDF(605 KB)   HTML
摘要:

C4二元羧酸(苹果酸、延胡索酸和琥珀酸等)是TCA循环中重要的中间代谢产物,广泛用于食品、医药和化工等行业。由于市场潜在需求量巨大,微生物发酵法生产C4二元羧酸备受关注。从自然界筛选的微生物可以大量积累C4二元羧酸,但存在诸多问题。而利用模式微生物生产C4二元羧酸具有很多优势,已成为国内外的研究热点。从三个方面综述了C4二元羧酸的研究进展:利用自然筛选及改造的微生物生产C4二元羧酸,代谢工程改造模式微生物生产C4二元羧酸,C4二元羧酸的发酵生产的代谢调控。最后,提出了微生物发酵法生产C4二元羧酸今后要解决的问题和发展方向。

关键词: C4二元羧酸微生物发酵系统代谢工程    
Abstract:

As metabolites in TCA cycle, C4 dicarboxylatic acids such as malic acid, fumaric acid and succinic acid, are widely used in food, pharmaceutical and chemical industries, the potential total annual demand for C4 dicarboxylatic acids is very huge. C4 dicarboxylatic acids production by microbial fermentation is attracting increasing attention. Some microorganism isolated from nature can produce large amounts of C4 dicarboxylatic acids, however, these processes are suffered many weakness. In contrast, the model microorganisms harbor many advantages for C4 dicarboxylatic acids production and become focus of study at home and abroad. Recent research progress in the production of C4 dicarboxylatic acids by microbial fermentation, including production of C4 dicarboxylatic acids by natural producing microorganism and its mutants, metabolic engineering of type strain for C4 dicarboxylatic acids production, and metabolism regulation of fermentation process were reviewed. Finally, the problems to be solved and future research direction was also proposed.

Key words: Dicarboxylatic acids    Microbial fermentation    System metabolic engineering
收稿日期: 2014-05-26 出版日期: 2014-08-25
ZTFLH:  Q819  
基金资助:

国家自然科学基金青年基金(31300027)、江苏省自然科学基金青年基金(BK20130136)、中国博士后基金(2014M550266)、中央高校基本科研业务费专项资金——江南大学自主科研青年项目(JUSRP1013)资助项目

通讯作者: 徐国强,E-mail:xuguoqiang@jiangnan.edu.cn     E-mail: xuguoqiang@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

徐国强, 吴满珍. 微生物发酵生产C4二元羧酸研究进展[J]. 中国生物工程杂志, 2014, 34(8): 97-104.

XU Guo-qiang, WU Man-zhen. A Review for Microbial Production of C4 Dicarboxylatic Acids. China Biotechnology, 2014, 34(8): 97-104.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140815        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I8/97


[1] Zelle R M, de Hulster E, van Winden W A, et al. Malic acid production by Saccharomyces cerevisiae: Engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microb, 2008, 74 (9): 2766-2777.

[2] Sauer M, Porro D, Mattanovich D, et al. Microbial production of organic acids: expanding the markets. Trends Biotechnol, 2008, 26 (2): 100-108.

[3] 徐国强, 刘立明, 陈坚. 酿酒酵母生产羧酸的代谢工程策略. 微生物学报, 2011, 51 (12): 1571-1577. Xu G Q, Liu L M, Chen J. Metabolic engineering strategies for carboxylic acids production by Saccharomyces cerevisiae. Acta Microbiologica Sinica, 2011, 51 (12): 1571-1577.

[4] Battat E, Peleg Y, Bercovitz A, et al. Optimization of L-malic acid production by Aspergillus flavus in a stirred fermentor. Biotechnol Bioeng, 1991, 37 (11): 1108-1116.

[5] Taing O, Taing K. Production of malic and succinic acids by sugar-tolerant yeast Zygosaccharomyces rouxii. Eur Food Res Technol, 2007, 224 (3): 343-347.

[6] Xu Q, Li S, Huang H, et al. Key technologies for the industrial production of fumaric acid by fermentation. Biotechnol Adv, 2012, 30 (6): 1685-1696.

[7] Cao N, Du J, Gong C S, et al. Simultaneous production and recovery of fumaric acid from immobilized Rhizopus oryzae with a rotary biofilm contactor and an adsorption column. Appl Environ Microbiol, 1996, 62 (8): 2926-2931.

[8] Kenealy W, Zaady E, du Preez J C, et al. Biochemical aspects of fumaric acid accumulation by Rhizopus arrhizus. Appl Environ Microbiol, 1986, 52 (1): 128-133.

[9] Zhou Z, Du G, Hua Z, et al. Optimization of fumaric acid production by Rhizopus delemar based on the morphology formation. Bioresour Technol, 2011, 102 (20): 9345-9349.

[10] Gu C, Zhou Y, Liu L, et al. Production of fumaric acid by immobilized Rhizopus arrhizus on net. Bioresour Technol, 2013, 131: 303-307.

[11] Wang G, Huang D, Qi H, et al. Rational medium optimization based on comparative metabolic profiling analysis to improve fumaric acid production. Bioresour Technol, 2013, 137: 1-8.

[12] 刘嵘民, 梁丽亚, 吴明科, 等. 微生物发酵生产丁二酸. 生物工程学报, 2013, 29 (10): 1386-1397. Liu R M, Liang L Y, Wu M K, et al. Progress in microbial production of succinic acid. Chinese Journal of Biotechnology, 2013, 29 (10): 1386-1397.

[13] Guettler M V, Jain M K, Rumler D. Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants. US, 5573931. 1996-11-12.

[14] Ye G Z, Jiang M, Li J, et al. Isolation of NH4+-tolerant mutants of Actinobacillus succinogenes for succinic acid production by continuous selection. J Microbiol Biotechnol, 2010, 20 (8): 1219-1225.

[15] Fang X J, Li J, Zheng X Y, et al. Enhancement of succinic acid production by osmotic-tolerant mutant strain of Actinobacillus succinogenes. World J Microb Biot, 2011, 27 (12): 3009-3013.

[16] d'Enfert C. Selection of multiple disruption events in Aspergillus fumigatus using the orotidine-5'-decarboxylase gene, pyrG, as a unique transformation marker. Curr Genet, 1996, 30 (1): 76-82.

[17] 周正雄. 德氏根霉产延胡索酸的发酵过程优化与羧化途径强化. 无锡:江南大学, 2012, 28-32. Zhou Z X. Enhancement of carboxylation pathway and process optimization of fumaric acid production by Rhizopus delemar. Wuxi:Jiangnan university, 2012, 28-32.

[18] Cao Y, Lin X. Metabolically engineered Escherichia coli for biotechnological production of four-carbon 1, 4-dicarboxylic acids. J Ind Microbiol Biotechnol, 2011, 38 (6): 649-656.

[19] Millard C S, Chao Y P, Liao J C, et al. Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl Environ Microbiol, 1996, 62 (5): 1808-1810.

[20] Moon S Y, Hong S H, Kim T Y, et al. Metabolic engineering of Escherichia coli for the production of malic acid. Biochem Eng J, 2008, 40 (2): 312-320.

[21] Gokarn R R, Evans J D, Walker J R, et al. The physiological effects and metabolic alterations caused by the expression of Rhizobium etli pyruvate carboxylase in Escherichia coli. Appl Microbiol Biotechnol, 2001, 56 (1-2): 188-195.

[22] Zhu J, Shimizu K. The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli. Appl Microbiol Biotechnol, 2004, 64 (3): 367-375.

[23] Chatterjee R, Millard C S, Champion K, et al. Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl Environ Microbiol, 2001, 67 (1): 148-154.

[24] Lin H, Bennett G N, San K Y. Genetic reconstruction of the aerobic central metabolism in Escherichia coli for the absolute aerobic production of succinate. Biotechnol Bioeng, 2005, 89 (2): 148-156.

[25] Lin H, Bennett G N, San K Y. Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions. Biotechnol Bioeng, 2005, 90 (6): 775-779.

[26] Lin H, Bennett G N, San K Y. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab Eng, 2005, 7 (2): 116-127.

[27] Song C W, Kim D I, Choi S, et al. Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnol Bioeng, 2013, 110 (7): 2025-2034.

[28] van Maris A J, Geertman J M, Vermeulen A, et al. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl Environ Microbiol, 2004, 70 (1): 159-166.

[29] Drewke C, Thielen J, Ciriacy M. Ethanol formation in adh0 mutants reveals the existence of a novel acetaldehyde-reducing activity in Saccharomyces cerevisiae. J Bacteriol, 1990, 172 (7): 3909-3917.

[30] Tokuhiro K, Ishida N, Nagamori E, et al. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Appl Microbiol Biot, 2009, 82 (5): 883-890.

[31] Xu G, Hua Q, Duan N, et al. Regulation of thiamine synthesis in Saccharomyces cerevisiae for improved pyruvate production. Yeast, 2012, 29 (6): 209-217.

[32] Vemuri G N, Eiteman M A, McEwen J E, et al. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 2007, 104 (7): 2402-2407.

[33] 赵亮亮, 汪军, 周景文, 等. 双层面调控Saccharomyces cerevisiae碳流促进L-乳酸的积累. 微生物学报, 2009, 51 (1): 50-58. Zhao L L, Wang J, Zhou J W, et al. Modification carbon flux in Saccharomyces cerevisiae to improve L-latic acid production. Acta Microbiologica Sinica, 2009, 51 (1): 50-58.

[34] Raab A M, Gebhardt G, Bolotina N, et al. Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metab Eng, 2010, 12 (6): 518-525.

[35] Kaclikova E, Lachowicz T M, Gbelska Y, et al. Fumaric acid overproduction in yeast mutants deficient in fumarase. Fems Microbiol Lett, 1992, 70 (2): 101-106.

[36] Xu G Q, Zou W, Chen X L, et al. Fumaric acid production in Saccharomyces cerevisiae by in silico aided metabolic engineering. Plos One, 2012, 7 (12):e52086.

[37] Zelle R M, Trueheart J, Harrison J C, et al. Phosphoenolpyruvate carboxykinase as the sole anaplerotic enzyme in Saccharomyces cerevisiae. Appl Environ Microb, 2010, 76 (16): 5383-5389.

[38] Zelle R M, Harrison J C, Pronk J T, et al. Anaplerotic role for cytosolic malic enzyme in engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol, 2011, 77 (3): 732-738.

[39] 闫道江, 王彩霞, 周杰民, 等. 酿酒酵母产苹果酸的还原TCA路径构建及发酵调控. 生物工程学报, 2013, 29 (10): 1484-1493. Yan D J, Wang C X, Zhou J M, et al. Construction and fermentation control of reductive TCA pathway for malic acid production in Saccharomyces cerevisiae strains. Chinese Journal of Biotechnology, 2013, 29 (10): 1484-1493.

[40] Xu G Q, Liu L M, Chen J. Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae. Microb Cell Fact, 2012, 11.

[41] Yan D, Wang C, Zhou J, et al. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Bioresource Technol, 2014, 156: 232-239.

[42] Raab A M, Lang C. Oxidative versus reductive succinic acid production in the yeast Saccharomyces cerevisiae. Bioeng Bugs, 2011, 2 (2): 120-123.

[43] Xu G Q, Chen X L, Liu L M, et al. Fumaric acid production in Saccharomyces cerevisiae by simultaneous use of oxidative and reductive routes. Bioresource Technol, 2013, 148: 91-96.

[44] Zelle R M, de Hulster E, Kloezen W, et al. Key process conditions for production of C(4) dicarboxylic acids in bioreactor batch cultures of an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol, 2010, 76 (3): 744-750.

[45] Lu S, Eiteman M A, Altman E. Effect of CO2 on succinate production in dual-phase Escherichia coli fermentations. J Biotechnol, 2009, 143 (3): 213-223.

[46] 秦义, 董志姚, 刘立明, 等. 工业微生物中NADH的代谢调控. 生物工程学报, 2009, 25 (2): 161-169. Qin Y, Dong Z Y, Liu L M, et al. Manipulation of NADH metabolism in industrial microorganism. Chinese Journal of Biotechnology, 2009, 25 (2): 161-169.

[47] Li J, Jiang M, Chen K Q, et al. Effect of redox potential regulation on succinic acid production by Actinobacillus succinogenes. Bioprocess Biosyst Eng, 2010, 33 (8): 911-920.

[48] 姜岷, 黄秀梅, 李建, 等. 氧化还原电位调控对产丁二酸放线杆菌代谢通量分布的影响. 化工学报, 2009, 60 (10): 2555-2561. Jiang M, Huang X M, Li J, et al. Effect of redox potential regulation on metabolic flux distribution of succinate production by Actinobacillus succinogenes. Journal of Chemical Engineering, 2009, 60 (10): 2555-2561.

[49] Sanchez A M, Bennett G N, San K Y. Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains. Metab Eng, 2006, 8 (3): 209-226.

[50] Xu N, Liu L, Zou W, et al. Reconstruction and analysis of the genome-scale metabolic network of Candida glabrata. Mol Biosyst, 2013, 9 (2): 205-216.

[51] Chen X L, Xu G Q, Xu N, et al. Metabolic engineering of Torulopsis glabrata for malate production. Metab Eng, 2013, 19: 10-16.

[1] 程丽娜,陆海燕,曲淑玲,张轶群,丁娟娟,邹少兰. 微生物发酵法生产环磷酸腺苷研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 102-108.
[2] 郜娇娇, 杨树林. 微生物发酵法生产高分子量透明质酸的研究进展[J]. 中国生物工程杂志, 2017, 37(5): 118-125.
[3] 时桂芹, 周文珊, 任菲. 微生物发酵提高SOD产率的研究进展[J]. 中国生物工程杂志, 2017, 37(4): 115-124.
[4] 贾慧慧, 李晓静, 陈涛, 赵学明. 微生物发酵法生产L-丝氨酸及L-半胱氨酸研究进展[J]. 中国生物工程杂志, 2014, 34(5): 100-106.
[5] 赵志军, 陈晟, 吴丹, 吴敬, 陈坚. 微生物发酵法生产L-色氨酸的代谢工程研究[J]. 中国生物工程杂志, 2011, 31(06): 135-141.
[6] 周丽 田康明 陈献忠 左志锐 石贵阳 王正祥. 微生物发酵产光学纯度D-乳酸研究进展[J]. 中国生物工程杂志, 2010, 30(10): 0-0.
[7] 周丽, 田康明, 陈献忠, 左志锐, 石贵阳, 王正祥. 微生物发酵产光学纯度D-乳酸研究进展[J]. 中国生物工程杂志, 2010, 30(10): 114-124.
[8] 裴海生,杨光,李春,张刚,曹竹安. 透明颤菌血红蛋白的研究进展及其在发酵工业中的应用[J]. 中国生物工程杂志, 2008, 28(7): 133-138.
[9] 罗明典. 世界生物技术领域取得重要进展[J]. 中国生物工程杂志, 1994, 14(3): 16-19.
[10] 罗明典. 微生物发酵产品开发的新动向[J]. 中国生物工程杂志, 1989, 9(4): 1-10.
[11] 张震元. 氨基酸发酵工业的发展近况[J]. 中国生物工程杂志, 1989, 9(4): 27-36.
[12] 罗明典. 十二种有特殊功用的蛋白质[J]. 中国生物工程杂志, 1988, 8(4): 20-21.