Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (8): 81-87    DOI: 10.13523/j.cb.20140813
综述     
DNA甲基化与microRNA
满朝来, 唐高霞, 赵丽, 李凤, 甄鑫
哈尔滨师范大学生命科学与技术学院 哈尔滨 150025
DNA Methylation and microRNAs
MAN Chao-lai, TANG Gao-xia, ZHAO Li, LI Feng, ZHEN Xin
College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
 全文: PDF(389 KB)   HTML
摘要:

细胞中DNA甲基化和microRNA(miRNA)相互影响,并共同调控着下游靶基因的表达活性,在细胞生长代谢、免疫、肿瘤和心血管疾病等生理和病理过程中发挥重要作用。首先简要介绍DNA甲基化与miRNA的概况,然后分析了miRNA调控下的DNA甲基化改变,探讨了DNA甲基化影响miRNA的表达活性变化,并归纳了miRNA与DNA甲基化之间的反馈调控关系;最后对DNA甲基化和miRNA的应用前景进行了简单探讨。研究DNA甲基化与miRNA间的网络调控关系,可为表观调控机制在理论和实践中的深入研究和应用提供参考。

关键词: DNA甲基化microRNA肿瘤表达    
Abstract:

DNA methylation and microRNAs (miRNAs) interact and regulate each other in cells, which co-regulate the expression of its downstream target genes, and play important functions in the physiological and pathological processes of cell growth, metabolism, immune, tumor and cardiovascular diseases, etc. The research situation of DNA methylation and miRNAs was summarized briefly. Then, DNA methylation changes under the regulation of miRNAs were analyzed; changes in miRNAs expression and activity under the regulation of DNA methylation were discussed. The feedback regulatory relationships between DNA methylation and miRNAs were also reviewed. Finally, the application prospects of DNA methylation and miRNAs were also discussed briefly. Studies on the regulatory network between DNA methylation and miRNAs, can supply references for further study and application of epigenetics.

Key words: DNA methylation    microRNA    Tumor    Expression
收稿日期: 2014-02-27 出版日期: 2014-08-25
ZTFLH:  Q789  
基金资助:

哈尔滨市科技创新人才研究专项资金资助项目(RC2012QN002008)

通讯作者: 满朝来,E-mail:machaolai@126.com     E-mail: machaolai@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

满朝来, 唐高霞, 赵丽, 李凤, 甄鑫. DNA甲基化与microRNA[J]. 中国生物工程杂志, 2014, 34(8): 81-87.

MAN Chao-lai, TANG Gao-xia, ZHAO Li, LI Feng, ZHEN Xin. DNA Methylation and microRNAs. China Biotechnology, 2014, 34(8): 81-87.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140813        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I8/81


[1] Prokhortchouk E, Defossez P A. The cell biology of DNA methylation in mammals. Biochim Biophys Acta, 2008, 1783(11): 2167-2173.

[2] Shiota K, Kogo Y, Ohgane J, et al. Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. Genes Cells, 2002, 7(9): 961-969.

[3] Eckhardt F, Lewin J, Cortese R, et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet, 2006, 38(12): 1378-1385.

[4] Illingworth R, Kerr A, Desousa D, et al. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol, 2008, 6(1): e22.

[5] Sørensen A L, Jacobsen B M, Reiner A H, et al. Promoter DNA methylation patterns of differentiated cells are largely programmed at the progenitor stage. Mol Biol Cell, 2010, 21(12): 2066-2077.

[6] Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA, 2007, 104 (40): 15805-15810.

[7] Garzon R, Liu S, Fabbri M, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood, 2009, 113(25): 6411-6418.

[8] Nguyen T, Kuo C, Nicholl M B, et al. Downregulation of microRNA-29c is associated with hypermethylation of tumor-related genes and disease outcome in cutaneous melanoma. Epigenetics, 2011, 6(3): 388-394.

[9] Sandhu R, Rivenbark A G, Mackler R M, et al. Dysregulation of microRNA expression drives aberrant DNA hypermethylation in basal-like breast cancer. Int J Oncol, 2014, 44(2): 563-572.

[10] Starlard-Davenport A, Kutanzi K, Tryndyak V, et al. Restoration of the methylation status of hypermethylated gene promoters by microRNA-29b in human breast cancer: A novel epigenetic therapeutic approach. J Carcinog, 2013, 12: 15-31.

[11] Zheng J, Wu C, Lin Z, et al. Curcumin up-regulates phosphatase and tensin homologue deleted on chromosome 10 through microRNA-mediated control of DNA methylation -a novel mechanism suppressing liver fibrosis. FEBS J, 2014, 281(1): 88-103.

[12] Qin H, Zhu X, Liang J, et al. MicroRNA-29b contributes to DNA hypomethylation of CD4+ T cells in systemic lupus erythematosus by indirectly targeting DNA methyltransferase 1. J Dermatol Sci, 2013, 69(1): 61-67.

[13] Morita S, Horii T, Kimura M, et al. miR-29 represses the activities of DNA methyltransferases and DNA demethylases. Int J Mol Sci, 2013, 14(7): 14647-14658.

[14] Huang J, Wang Y, Guo Y, et al. Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology, 2010, 52(1): 60-70.

[15] Wang Y S, Chou W W, Chen K C, et al. MicroRNA-152 mediates DNMT1-regulated DNA methylation in the estrogen receptor α gene. PLoS One, 2012, 7(1): e30635.

[16] Ng E K, Li R, Shin V Y, et al. MicroRNA-143 is downregulated in breast cancer and regulates DNA methyltransferases 3A in breast cancer cells. Tumour Biol, 2014, 35(3): 2591-2598.

[17] Zhao S, Wang Y, Liang Y, et al. MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum, 2011, 63(5): 1376-1386.

[18] Pan W, Zhu S, Yuan M, et al. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol, 2010, 184(12): 6773-6781.

[19] Chen B F, Gu S, Suen Y K, et al. microRNA-199a-3p, DNMT3A, and aberrant DNA methylation in testicular cancer. Epigenetics, 2014, 9(1): 119-128.

[20] Wang H, Wu J, Meng X, et al. MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. Carcinogenesis, 2011, 32(7): 1033-1042.

[21] Zhang Z, Tang H, Wang Z, et al. MiR-185 targets the DNA methyltransferases 1 and regulates global DNA methylation in human glioma. Mol Cancer, 201, 10: 124-139.

[22] Chavali V, Tyagi S C, Mishra P K. MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes. Biochem Biophys Res Commun, 2012, 425(3): 668-672.

[23] Song K, Han C, Zhang J, et al. Epigenetic regulation of miR-122 by PPARγ and hepatitis B virus X protein in hepatocellular carcinoma cells. Hepatology, 2013, 58(5):1681-1692.

[24] Xing T J, Xu H T, Yu W Q, et al. Methylation regulation of liver-specific microRNA-122 expression and its effects on the proliferation and apoptosis of hepatocellular carcinoma cells. Genet Mol Res, 2013, 12(3): 3588-3597.

[25] Chen X, Zhang L, Zhang T, et al. Methylation-mediated repression of microRNA 129-2 enhances oncogenic SOX4 expression in HCC. Liver Int, 2013, 33(3): 476-486.

[26] He Y, Cui Y, Wang W, et al. Hypomethylation of the hsa-miR-191 locus causes high expression of hsa-mir-191 and promotes the epithelial-to-mesenchymal transition in hepatocellular carcinoma. Neoplasia, 2011, 13(9): 841-853.

[27] Datta J, Kutay H, Nasser M W, et al. Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res, 2008, 68(13): 5049-5058.

[28] Geng J, Luo H, Pu Y, et al. Methylation mediated silencing of miR-23b expression and its role in glioma stem cells. Neurosci Lett, 2012, 528(2):185-189.

[29] Wong K Y, Yim R L, So C C, et al. Epigenetic inactivation of the MIR34B/C in multiple myeloma. Blood, 2011, 118(22): 5901-5904.

[30] Toyota M, Suzuki H, Sasaki Y, et al. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res, 2008, 68(11): 4123-4132.

[31] Grady W M, Parkin R K, Mitchell P S, et al. Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene, 2008, 27(27): 3880-3888.

[32] Tang J T, Wang J L, Du W, et al. MicroRNA 345, a methylation-sensitive microRNA is involved in cell proliferation and invasion in human colorectal cancer. Carcinogenesis, 2011, 32(8): 1207-1215.

[33] Takahashi Y, Iwaya T, Sawada G, et al. Up-regulation of nek2 by microrna-128 methylation is associated with poor prognosis in colorectal cancer. Ann Surg Oncol, 2014, 21(1): 205-212.

[34] Yamada N, Noguchi S, Kumazaki M, et al. Epigenetic regulation of microRNA-128a expression contributes to the apoptosis-resistance of human T-cell leukaemia Jurkat cells by modulating the expression of Fas-associated protein with death domain (FADD). Biochim Biophys Acta, 2013, 1843(3): 590-602.

[35] Dou L, Zheng D, Li J, et al. Methylation-mediated repression of microRNA-143 enhances MLL-AF4 oncogene expression. Oncogene, 2012, 31(4): 507-517.

[36] Gao X N, Lin J, Li Y H, et al. MicroRNA-193a represses c-kit expression and functions as a methylation-silenced tumor suppressor in acute myeloid leukemia. Oncogene, 2011, 30(31): 3416-3428.

[37] Bueno M J, Pérez de Castro I, Gómez de Cedrón M, et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell, 2008, 13(6): 496-506.

[38] Wang P, Chen L, Zhang J, et al. Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene, 2014, 33(4): 514-524.

[39] Hanoun N, Delpu Y, Suriawinata A A, et al. The silencing of microRNA 148a production by DNA hypermethylation is an early event in pancreatic carcinogenesis. Clin Chem, 2010, 56(7): 1107-1118.

[40] Suzuki H, Yamamoto E, Nojima M, et al. Methylation-associated silencing of microRNA-34b/c in gastric cancer and its involvement in an epigenetic field defect. Carcinogenesis, 2010, 31(12): 2066-2073.

[41] Lei H, Zou D, Li Z, et al. MicroRNA-219-2-3 Pfunctions as a tumor suppressor in gastric cancer and is regulated by DNA methylation. PLoS One, 2013, 8(4): e60369.

[42] Xu L, Wang F, Xu X F, et al. Down-regulation of miR-212 expression by DNA hypermethylation in human gastric cancer cells. Med Oncol, 2011, 28(Suppl 1):189-196.

[43] Suh S O, Chen Y, Zaman M S, et al. MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis, 2011, 32(5): 772-778.

[44] Chu M, Chang Y, Li P, et al. Androgen receptor is negatively correlated with the methylation-mediated transcriptional repression of miR-375 in human prostate cancer cells. Oncol Rep, 2014, 31(1): 34-40.

[45] Shimizu T, Suzuki H, Nojima M, et al. Methylation of a panel of microRNA genes is a novel biomarker for detection of bladder cancer. Eur Urol, 2013, 63(6): 1091-1100.

[46] Gebauer K, Peters I, Dubrowinskaja N, et al. Hsa-mir-124-3 CpG island methylation is associated with advanced tumours and disease recurrence of patients with clear cell renal cell carcinoma. Br J Cancer, 2013, 108(1): 131-138.

[47] Alvarado S, Wyglinski J, Suderman M, et al. Methylated DNA binding domain protein 2 (MBD2) coordinately silences gene expression through activation of the MicroRNA hsa-mir-496 promoter in breast cancer cell line. PLoS One, 2013, 8(10): e74009.

[48] Yu F, Jiao Y, Zhu Y, et al. MicroRNA 34c gene down-regulation via DNA methylation promotes self-renewal and epithelial-mesenchymal transition in breast tumor-initiating cells. J Biol Chem, 2012, 287(1): 465-473.

[49] Skrn M I, Barøy T, Stratford E W, et al. Epigenetic regulation and functional characterization of MicroRNA-142 in mesenchymal cells. PLoS One, 2013, 8(11): e79231.

[50] Pieraccioli M, Imbastari F, Antonov A, et al. Activation of miR200 by c-Myb depends on ZEB1 expression and miR200 promoter methylation. Cell Cycle, 2013, 12(14): 2309-2320.

[51] Diao Y, Guo X, Jiang L, et al. miR-203, a tumor suppressor frequently down-regulated by promoter hypermethylation in Rhabdomyosarcoma. J Biol Chem, 2014, 289(1): 529-539.

[52] Yang C, Cai J, Wang Q, et al. Epigenetic silencing of miR-130b in ovarian cancer promotes the development of multidrug resistance by targeting colony-stimulating factor 1. Gynecol Oncol, 2012, 124(2): 325-334.

[53] Minor J, Wang X, Zhang F, et al. Methylation of microRNA-9 is a specific and sensitive biomarker for oral and oropharyngeal squamous cell carcinomas. Oral Oncol, 2012, 48(1): 73-78.

[54] Saito J, Hirota T, Furuta S, et al. Association between DNA methylation in the miR-328 5'-flanking region and inter-individual differences in miR-328 and BCR Pexpression in human placenta. PLoS One, 2013, 8(8): e72906.

[55] Zhu A, Xia J, Zuo J, et al. MicroRNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in gastric cancer. Med Oncol, 2012, 29(4): 2701-2709.

[56] Tsuruta T, Kozaki K, Uesugi A, et al. miR-152 is a tumor suppressor microRNA that is silenced by DNA hypermethylation in endometrial cancer. Cancer Res, 2011, 71(20): 6450-6462.

[57] Chen Y, Shin B C, Thamotharan S, et al. Differential methylation of the micro-RNA 7b gene targets postnatal maturation of murine neuronal Mecp2 gene expression. Dev Neurobiol, 2014, 74(4): 407-425.

[58] Muraoka T, Soh J, Toyooka S, et al. The degree of microRNA-34b/c methylation in serum-circulating DNA is associated with malignant pleural mesothelioma. Lung Cancer, 2013, 82(3): 485-490.

[1] 贺立恒,张毅,张洁,任豫超,解红娥,唐锐敏,贾小云,武宗信. 基于转录组和WGCNA的甘薯花青素合成相关基因共表达网络的构建及核心基因的挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 27-36.
[2] 赵梦泽,李凤智,王鹏银,李剑,徐寒梅. PD-L1和VEGF双靶点联合阻断治疗的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 71-77.
[3] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[4] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[5] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[6] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[7] 张磊,唐永凯,李红霞,李建林,徐逾鑫,李迎宾,俞菊华. 促进原核表达蛋白可溶性的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 138-149.
[8] 刘美琴,高博,焦月盈,李玮,虞结梅,彭向雷,郑妍鹏,付远辉,何金生. 人呼吸道合胞病毒感染的A549细胞中长链非编码RNA表达谱研究[J]. 中国生物工程杂志, 2021, 41(2/3): 7-13.
[9] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[10] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[11] 杨茜,栾雨时. sly-miR399在番茄抗晚疫病中的初步探究*[J]. 中国生物工程杂志, 2021, 41(11): 23-31.
[12] 陈素芳,夏明印,曾丽艳,安晓琴,田敏芳,彭建. 抗菌肽Cec4a的重组表达和抗菌活性研究*[J]. 中国生物工程杂志, 2021, 41(10): 12-18.
[13] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[14] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[15] 邓通,周海胜,吴坚平,杨立荣. 基于分子伴侣策略提高NADPH依赖型醇脱氢酶的异源可溶性表达 *[J]. 中国生物工程杂志, 2020, 40(8): 24-32.