Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (8): 74-80    DOI: 10.13523/j.cb.20140812
综述     
TAL效应子介导基因组DNA的靶向修饰
庄军, 吴祖建
福建农林大学植物病毒研究所 福建省植物病毒学重点实验室 福州 350002
Targeted Modification of Genomic DNA by TALEs
ZHUANG Jun, WU Zu-jian
Fujian Provincial Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
 全文: PDF(810 KB)   HTML
摘要:

植物黄单胞菌病原细菌分泌的TAL效应子(Transcription activator-like effector)可结合特异的双链DNA。TAL是由序列几乎相同的多个DNA结合域的重复串联而构成的,每个DNA结合模块的重复可变双残基特异识别一个DNA碱基。TAL和核酸修饰相关功能域融合而成的定制TAL效应子(dTALE)能特定靶向修饰基因组DNA,在新近遗传工程中扮演重要角色。目前,TAL效应子与核酸酶FokI融合成的TALEN核酸酶(TALEN)能够靶向识别基因组位点并由核酸酶切割双链DNA造成双链断裂,通过同源重组(HR)或非同源末端连接(NHEJ)进行双链修复从而引发特定位点的基因突变。TALENs在多个模式生物中都具有较高的靶向有效性,而且TAL效应子DNA结合域可进行模块化设计,能够发展成高通量的基因靶向修饰和调控的平台,具有广阔的实际应用前景。对 TAL效应子特异识别DNA的结构分析、TALENs的设计策略以及TAL效应子在基因组靶向修饰中的应用与展望等方面进行了概述。

关键词: TAL效应子TAL效应子核酸酶重复可变双残基靶向突变    
Abstract:

TAL (transcription activator-like) effectors secreted by plant pathogenic bacteria of genus Xanthomonasis capable of binding to specific genomic dsDNA. TAL is composed of modular architectures of DNA binding domains encompassing a tandem array of several almost identical repeat sequences. dTALEs (designed TALEs) restructured with TAL effector and other nucleotide acid-binding domains (such as nuclease, activator and suppressor) can specifically target and modify specific genomic DNA sequence, and play a pivotal role in genetic engineering. The repeat variable diresidues (RVDs) in each TAL repeat is exclusively responsible for recognition of single DNA base. TALENs consisting of TAL and restriction enzyme Fok I can contact with the specifical genomic DNA site and undergo the cleavage of dsDNA. The resulting double-stranded breaks usually are remedied through HR (homologous recombination) and NHEJ (non homologous end joining) and elicit corresponding gene mutations. TALENs are capable of generating highly efficient mutation in many model organisms. In virtue of modular design of the DNA-binding domain from TALEN system, TALENs can be developed into high-throughput platforms for gene modification and regulation and have broad-spectrum applications. Herein, an overview of the state-of-the-art structural advance of the TAL effectors, the design strategy for TALENs and applications and perspectives of TAL effector in genome-targeting modification and so on were provided.

Key words: TAL effector    TALE nucleases    Repeat variable diresidues    Targeted mutation
收稿日期: 2014-05-04 出版日期: 2014-08-25
ZTFLH:  Q789  
基金资助:

国家自然科学基金资助项目(31301641)

通讯作者: 吴祖建,E-mail:wuzujian@126.com     E-mail: wuzujian@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

庄军, 吴祖建. TAL效应子介导基因组DNA的靶向修饰[J]. 中国生物工程杂志, 2014, 34(8): 74-80.

ZHUANG Jun, WU Zu-jian. Targeted Modification of Genomic DNA by TALEs. China Biotechnology, 2014, 34(8): 74-80.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140812        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I8/74


[1] Urnov F D, Rebar E J, Holmes M C, et al. Genome editing with engineered zinc finger nucleases. Nat Rev Genet, 2010, 11(9): 636-646.

[2] Carroll D. Genome engineering with zinc-finger nucleases. Genetics, 2011, 188: 773-782.

[3] Kay S, Hahn S, Marois E, et al. Bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science, 2007, 318: 648-651.

[4] Römer P, Hahn S, Jordan T, et al. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science, 2007, 318: 645-648.

[5] Bogdanove A J, Schornack S, Lahaye T. TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol, 2010, 13: 394-401.

[6] Boch J, Bonas U. Xanthomonas AvrBs3 family-type Ⅲ effectors: discovery and function. Annu Rev Phytopathol, 2010, 48: 419-436.

[7] Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type Ⅲ effectors. Science, 2009, 326: 1509-1512.

[8] Deng D, Yan C, Pan X, et al. Structural basis of sequence-specific recognition of DNA by TAL effectors. Science, 2012, 335: 720-723.

[9] Mak A N, Bradley P, Cernadas R A, et al.The crystal structure of TAL effector PthXo1 bound to its DNA target. Science, 2012, 335:716-720.

[10] Miller J C, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol, 2011, 29: 143-148.

[11] Morbitzer R, Römer P, Boch J, et al. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci USA, 2010, 107: 21617-21622.

[12] Streubel J, Blücher C, Landgraf A, et al. TAL effector RVD specificities and efficiencies. Nat Biotechnol, 2012, 30: 593-595.

[13] Boch J, Bonas U. Xanthomonas AvrBs3 family-type Ⅲ effectors: discovery and function. Annu Rev Phytopathol, 2010, 48: 419436.

[14] .Deng D, Yan C, Wu J, et al. Revisiting the TALE repeat. Protein Cell, 2014, 5(4):297-306.

[15] Römer P, Recht S, Lahaye T. A single plant resistance gene promoter engineered to recognize multiple TAL effectors from disparate pathogens. Proc Natl Acad Sci USA, 2009, 106: 20526-20531.

[16] Römer P, Recht S, Strauss T, et al. Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytol, 2010, 187: 1048-1057.

[17] Antony G, Zhou J, Huang S, et al. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell, 2010, 22: 3864-3876.

[18] Li T, Huang S, Zhao X, et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res, 2011, 39: 6315-6325.

[19] Christian M, Cermak T, Doyle E L, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 2010, 186: 757-761.

[20] Morbitzer R, Elsaesser J, Hausner J, et al. Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res, 2011, 39: 5790-5799.

[21] Mahfouz M M, Li L, Shamimuzzaman M, et al. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA, 2011, 108: 2623-2628.

[22] Mussolino C, Cathomen T. TALE nucleases: tailored genome engineering made easy. Curr Opin Biotech, 2012, 23:644-650.

[23] Cermak T, Doyle E L, Christian M, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res, 2011, 39: e82.

[24] Wood A J, Lo T W, Zeitler B, et al. Targeted genome editing across species using ZFNs and TALENs. Science, 2011, 333:6040.

[25] Liu J, Li C, Yu Z, et al. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Gen and Genom 2012, 39:209-215.

[26] Huang P, Xiao A, Zhou M, et al. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol, 2011, 29: 699-700.

[27] Cade L, Reyon D, Hwang W Y, et al. Highly efficient generation of heritable zebrafish gene mutations using homo-and heterodimeric TALENs. Nucleic Acids Res, 2012, 40: 8001-8010.

[28] Tong C, Huang G, Ashton C, et al. Rapid and cost-effective gene targeting in rat embryonic stem cells by TALENs. J Gen and Genom, 2012, 39:275-280.

[29] Tesson L, Usal C, Ménoret S, et al. Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol, 2011, 29: 695-696.

[30] Hockemeyer D, Wang H, Kiani S, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol, 2011, 29: 731-734.

[31] Nga-Sze Mak A, Bradley P, Bogdanove A J, et al. TAL effectors: function, structure, engineering and applications. Curr Opin Struc Biol, 2012, 23:17.

[32] Mussolino C, Morbitzer R, Lütge F, et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res, 2011, 39: 9283-9293.

[33] Händel E M, Alwin S, Cathomen T. Expanding or restricting the target site repertoire of zinc-finger nucleases: the inter-domain linker as a major determinant of target site selectivity. Mol Ther, 2008, 17: 104-111.

[34] Zhang F, Cong L, Lodato S, et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol, 2011, 29: 149-153.

[35] Moore F E, Reyon D, Sander J D, et al. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PLoS ONE, 2011.6: e19509.

[36] Konermann S, Brigham M D, Trevino A E, et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature. 2013, 500(7463):472-476.

[37] Deng D, Yin P, Yan C, et al. Recognition of methylated DNA by TAL effectors. Cell Research, 2012, 22:1502-1504.

[38] Engler C, Gruetzner R, Kandzia R, et al. Golden gate shuffling: a one-pot DNA shuffling method based on type Ⅱs restriction enzymes. PLoS ONE, 2009, 4: e5553.

[39] Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE, 2008, 3: e3647.

[40] Li T, Liu B, Spalding M H, et al. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol, 2012, 30: 390-392.

[41] Vainstein A, Marton I, Zuker A, et al. Permanent genome modifications in plant cells by transient viral vectors. Trends Biotechnol, 2011, 29: 363-369.

[1] 夏文跃, 王晶, 赵冰心, 潘小霞, 文喻玲, 陈元鼎. 轮状病毒VP4抗原表位在VP6载体蛋白同一位点表达比较研究[J]. 中国生物工程杂志, 2015, 35(8): 9-15.
[2] 高飞, 周婧, 刘晓彤, 李成磊, 姚慧鹏, 赵海霞, 吴琦. 苦荞锌指蛋白基因FtLOL1的克隆及其对非生物胁迫的应答[J]. 中国生物工程杂志, 2015, 35(8): 44-50.
[3] 王青, 徐彦召, 魏晓晓, 王秋霞, 杭柏林, 孙亚伟, 王飞飞, 胡建和. 猪繁殖与呼吸综合征病毒GP5a多克隆抗血清的制备[J]. 中国生物工程杂志, 2015, 35(8): 38-43.
[4] 万方, 张斌, 陈民良, 陈进聪, 陈雪岚. proCputP基因的敲除对钝齿棒杆菌产L-精氨酸生理代谢的影响[J]. 中国生物工程杂志, 2015, 35(8): 51-58.
[5] 常玉梅, 侯占铭. 禾谷镰刀菌中FgPDE1基因的敲除及其功能的研究[J]. 中国生物工程杂志, 2015, 35(8): 59-67.
[6] 申冬玲, 尚淑梅, 李卫娜, 严金平, 伊日布斯. ack基因敲除对Thermoanaerobacterium calidifontis Rx1发酵代谢的影响[J]. 中国生物工程杂志, 2015, 35(7): 37-44.
[7] 罗婉月, 李天明, 于莹, 许湄雪, 仪宏. Ketogulonigenium vulgare四环素诱导表达穿梭质粒的构建[J]. 中国生物工程杂志, 2015, 35(5): 81-86.
[8] 方世雄, 马义, 沈淑桃, 赵绍军, 洪岸. 基因重组TNFα衍生物TRSP10的高效制备及其对DU145细胞抑制作用研究[J]. 中国生物工程杂志, 2015, 35(4): 11-16.
[9] 王晓艳, 陈娜子, 艾君, 赵央, 吴美玉, 黄金枝, 姜潮, 李校堃. HBVpre-c-Fc融合蛋白在杆状病毒表达系统中的表达及其生物学活性研究[J]. 中国生物工程杂志, 2015, 35(4): 42-47.
[10] 肖仕圆, 许敬亮, 陈小燕, 杨柳, 袁振宏. 在大肠杆菌中表达酮酸脱羧酶产异戊醇[J]. 中国生物工程杂志, 2015, 35(4): 60-65.
[11] 龚隆财, 罗镇明, 杨雁青, 王振宇, 向军俭, 王宏. cTnI-linker-TnC融合蛋白的原核表达及鉴定[J]. 中国生物工程杂志, 2015, 35(4): 48-53.
[12] 陈静静, 邢桂春, 张令强. 基于Loxp-Cre系统的FBXL15基因敲除小鼠模型的建立[J]. 中国生物工程杂志, 2015, 35(4): 74-79.
[13] 李明, 王永飞, 焦金霞, 杨洋, 张宁, 邢象斌, 马三梅. OPCML在胃癌中的表达及对胃癌细胞生物学的作用[J]. 中国生物工程杂志, 2015, 35(2): 1-7.
[14] 刘亚龙, 闫东明, 翁樑, 邹雪, 刘丹, 彭超, 苏亚南, 闫锦锦, 张静, 郭志燕. 重组大肠杆菌不耐热肠毒素B亚单位的中试发酵及纯化工艺[J]. 中国生物工程杂志, 2015, 35(2): 78-83.
[15] 刘阳, 杨雅麟, 张宇婷, 冉超, 周志刚. 维氏气单胞菌B565β-N-乙酰氨基葡萄糖苷酶的表达、纯化及酶学性质[J]. 中国生物工程杂志, 2015, 35(2): 38-44.