Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (8): 35-40    DOI: 10.13523/j.cb.20140806
研究报告     
基于比速率及代谢流的黑曲霉突变株和野生株分析
陈香粉, 鲁洪中, 唐文俊, 唐寅, 储炬, 庄英萍, 张嗣良
华东理工大学生物反应器工程国家重点实验室 上海 200237
Comparison of Two Aspergillus niger Mutant and Wild Strains Based on q-rate and Flux Balance Analysis
CHEN Xiang-fen, LU Hong-zhong, TANG Wen-jun, TANG Yin, CHU Ju, ZHUANG Ying-pin, ZHANG Si-liang
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
 全文: PDF(1395 KB)   HTML
摘要:

黑曲霉具备优异的外源蛋白表达和分泌能力,从而被广泛应用于工业酶制剂的生产。通过研究黑曲霉突变株和野生株在相同培养条件下生理参数和代谢流的差异,确定了黑曲霉合成糖化酶过程中的限制性因素。宏观动力学分析发现,较之野生株,突变株具有较高的最大比生长速率,并且副产物得率降低了90%,底物利用率提高了近30%,表明突变株与野生株在碳源分配和产物转化率上具有明显的差异。利用流平衡分析(FBA)计算胞内代谢通量分布,发现还原力和核糖的供应水平是限制菌体合成的主要因素,而前体氨基酸是合成糖化酶最主要的限制性因素。这些研究结果为后续发酵工艺优化和菌株基因改造提供了有益的思路。

关键词: 黑曲霉糖化酶代谢通量分析副产物    
Abstract:

Aspergillus niger is widely used in industrial enzyme production for its excellent protein expression and secretion capacity. The differences of physiological behaviors and metabolic flux distribution between Aspergillus niger mutant and wild strains under same cultivation conditions are investigated, so as to determine limited factors in glucoamylase production. Based on kinetic analysis, it is confirmed that the mutant strain gets a higher maximum specific growth rate (+30%), a lower by-product productivity (-90%) and a higher substrate uptake efficiency (+30%), which implies significant differences in carbon distribution and substrate usage efficiency between these two strains. By applying Flux Balance Analysis (FBA), it is found that supplies of reducing power and ribose are main factors which effect cell growth. What's more, precursor amino acids is confirmed to be the main limited factor in glucoamylase production. These conclusions provide significances for subsequent bioprocess optimization and strain gene modification.

Key words: Aspergillus niger    Glucoamylase    Flux balance analysis    By-product
收稿日期: 2014-05-05 出版日期: 2014-08-25
ZTFLH:  Q936  
基金资助:

国家高技术研究与发展计划资助项目(2014AA021705)

通讯作者: 唐寅,E-mail:tangyin@ecust.edu.cn     E-mail: tangyin@ecust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陈香粉, 鲁洪中, 唐文俊, 唐寅, 储炬, 庄英萍, 张嗣良. 基于比速率及代谢流的黑曲霉突变株和野生株分析[J]. 中国生物工程杂志, 2014, 34(8): 35-40.

CHEN Xiang-fen, LU Hong-zhong, TANG Wen-jun, TANG Yin, CHU Ju, ZHUANG Ying-pin, ZHANG Si-liang. Comparison of Two Aspergillus niger Mutant and Wild Strains Based on q-rate and Flux Balance Analysis. China Biotechnology, 2014, 34(8): 35-40.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140806        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I8/35

[1] Galbraith J C, Smith J E. Sporulation of Aspergillus niger in submerged liquid culture. Journal of General Microbiology, 1969, 59(1): 31-45.
[2] David H, Zçelik I S, Hofmann G, et al. Analysis of Aspergillus nidulans metabolism at the genome-scale. Bmc Genomics, 2008, 9(1): 163.
[3] Alper H, Jin Y-S, Moxley J, et al. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metabolic Engineering, 2005, 7(3): 155-164.
[4] Mukhopadhyay A, Redding A M, Rutherford B J, et al. Importance of systems biology in engineering microbes for biofuel production. Current Opinion in Biotechnology, 2008, 19(3): 228-234.
[5] Pluschkell S, Hellmuth K, Rinas U. Kinetics of glucose oxidase excretion by recombinant Aspergillus niger. Biotechnology and Bioengineering, 1996, 51(2): 215-220.
[6] Nielsen J, Jorgensen H S. Metabolic control analysis of the Penicillin biosynthetic pathway in a high-yielding strain of Penicillium chrysogenum. Biotechnology Progress, 1995, 11(3): 299-305.
[7] Borodina I, Siebring J, Zhang J, et al. Antibiotic overproduction in streptomyces coelicolor A3 (2) mediated by phosphofructokinase deletion. Journal of Biological Chemistry, 2008, 283(37): 25186-25199.
[8] Gunnarsson N, Eliasson A, Nielsen J. Control of fluxes towards antibiotics and the role of primary metabolism in production of antibiotics. Molecular Biotechnolgy of Fungal beta-Lactam Antibiotics and Related Peptide Synthetases, 2004, 88(5):137-178.
[9] Gao H J, Du G C, Chen J. Analysis of metabolic fluxes for hyaluronic acid (Ha) production by Streptococcus zooepidemicus. World Journal of Microbiology and Biotechnology, 2006, 22(4): 399-408.
[10] Sauer U, Eikmanns B J. The peppyruvateoxaloacetate node as the switch point for carbon flux distribution in bacteria. Fems Microbiology Reviews, 2005, 29(4): 765-794.
[11] Elik E, alik P, Oliver S G. Metabolic flux analysis for recombinant protein production by Pichia pastoris using dual carbon sources: Effects of methanol feeding rate. Biotechnology and Bioengineering, 2010, 105(2): 317-329.
[12] Lasse P, Hansen K, Nielsen J, et al. Industrial glucoamylase fed-batch benefits from oxygen limitation and high osmolarity. Biotechnology and Bioengineering, 2012, 109(1): 116-124.
[13] Melzer G, Dalpiaz A, Grote A, et al. Metabolic flux analysis using stoichiometric models for Aspergillus niger: Comparison under glucoamylase-producing and non-producing conditions. Journal of Biotechnology, 2007, 132(4): 405-417.
[14] Niklas J, Schneider K, Heinzle E. Metabolic flux analysis in Eukaryotes. Current Opinion in Biotechnology, 2010, 21(1): 63-69.
[15] Dromms R, Styczynski M. Systematic applications of metabolomics in metabolic engineering. Metabolites, 2012, 2(4): 1090-1122.
[16] Young J D. Inca: A computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics, 2014, 30(9): 1333-1335.
[17] Antoniewicz M R, Kelleher J K, Stephanopoulos G. Elementary metabolite units (Emu): A novel framework for modeling isotopic distributions. Metabolic Engineering, 2007, 9(1): 68-86.
[18] Weitzel M, Nöh K, Dalman T, et al. 13C flux2—high-performance software suite for 13C-metabolic flux analysis. Bioinformatics, 2013, 29(1): 143-145.

[1] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[2] 王利群, 鲁洪中, 储炬, 王永红. 不同培养方式下dCO2对黑曲霉发酵产糖化酶的影响[J]. 中国生物工程杂志, 2017, 37(1): 27-37.
[3] 施慧琳, 孙靖淳, 张荣凯, 高大启, 王泽建, 郭美锦, 周礼勤, 庄英萍. 电子嗅在线反馈控制毕赤酵母糖化酶发酵过程中甲醇浓度新方法的应用[J]. 中国生物工程杂志, 2016, 36(3): 68-76.
[4] 袁佩佩, 曹伟佳, 王震, 张博文, 陈可泉, 李艳, 欧阳平凯. 大肠杆菌产L-苯丙氨酸发酵调控及代谢通量分析[J]. 中国生物工程杂志, 2015, 35(3): 25-34.
[5] 李刚锐, 李林俐, 范翔, 孟延发. 溶胶凝胶法固定化黑曲霉脂肪酶的性质研究[J]. 中国生物工程杂志, 2014, 34(4): 78-84.
[6] 李瑞瑞, 刘佃磊, 杨晴, 郝琼, 姜凯凯, 李丕武. 响应面法优化黑曲霉产葡萄糖氧化酶的发酵条件[J]. 中国生物工程杂志, 2013, 33(10): 111-116.
[7] 黎明, 刘萌, 黄云雁, 周丽颖, 孙昕, 路福平. 根癌农杆菌介导的黑曲霉遗传转化体系的建立及优化[J]. 中国生物工程杂志, 2012, 32(01): 56-63.
[8] 黄文, 杨洪江, 秦慧彬. 黑曲霉纤维素酶突变子T-DNA插入位点的遗传分析及性质鉴定[J]. 中国生物工程杂志, 2011, 31(04): 60-64.
[9] 李晓静, 段云霞. 代谢工程在核黄素生产上的应用[J]. 中国生物工程杂志, 2011, 31(02): 130-138.
[10] 秦慧彬, 杨洪江, 黄文, 李玲艳. 强启动子glaA介导cbhB基因在黑曲霉中的表达[J]. 中国生物工程杂志, 2010, 30(11): 34-38.
[11] 胡风庆 回晶. 可再生生物柴油副产物合成生物材料PHA研究现状[J]. 中国生物工程杂志, 2009, 29(11): 112-116.
[12] 曹泽虹,董玉玮,苗敬芝,吕兆启. 黑曲霉生产菊粉酶工艺条件的研究[J]. 中国生物工程杂志, 2009, 29(08): 97-101.
[13] 王建,王泽建,黄明志,钱江潮,储炬,张嗣良. 13CMFA过程中GC-MS分析菌体蛋白氨基酸的13C标记丰度[J]. 中国生物工程杂志, 2009, 29(07): 87-93.
[14] 俞志敏,徐凯,徐鹏,汤佳鑫,赵长新. 高产谷胱甘肽酵母菌株的选育及其代谢通量分析[J]. 中国生物工程杂志, 2008, 28(7): 110-115.
[15] 林贝,赵心清,葛旭萌,白凤武. 玉米秸秆酸解副产物对重组酿酒酵母6508-127发酵的影响[J]. 中国生物工程杂志, 2007, 27(7): 61-67.