Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (4): 85-94    DOI: 10.13523/j.cb.20140414
综述     
抗体偶联药物的研究进展与质量控制
王兰, 夏懋, 高凯
中国食品药品检定研究院 北京 100050
The Development and Quality Control of Antibody-Drug Conjugates
WANG Lan, XIA Mao, GAO Kai
National Institutes for Food and Drug Control, Beijing 100050, China
 全文: PDF(512 KB)   HTML
摘要:

抗体偶联药物(antibody-drug conjugates,ADC)因其良好的靶向性及抗癌活性目前已成为抗肿瘤抗体药物研发的新热点和重要趋势,受到越来越多的关注。ADC药物由单克隆抗体、高效应的细胞毒性物质以及连接臂三部分组成,它将抗体的靶向性与细胞毒性药物的抗肿瘤作用相结合,可以降低细胞毒性抗肿瘤药物的不良反应,提高肿瘤治疗的选择性,还能更好地应对靶向单抗的耐药性问题。与传统单抗药物相比,因其结构复杂,ADC药物质量属性分析方法的建立具有更大的难度和特殊性。对抗体偶联药物的研发现状、质量属性分析方法和挑战以及质量控制要点进行了简要介绍,为ADC药物的研究和质量控制提供参考。

关键词: 抗体药物抗体偶联药物质量控制    
Abstract:

As the good targeting and anticancer activity, antibody-drug conjugates (ADCs) have become the new hot spot and important trends for anticancer antibody drug development, and get more and more attention. ADCs consist of a monoclonal antibody (MAb), a linker, and a cytotoxic drug. ADCs combine the targeting of MAb and the anticancer effects of cytotoxic drugs, reduce the adverse effects of cytotoxic drugs, improve the selectivity of cancer therapeutics, and better cope with the drug resistance problem of MAbs. Compared with traditional monoclonal antibodies, because of the complexity of ADCs, the establishment of analysis methods for ADC quality attributes has greater difficulty and specificity. The current development situation, analytical methods and challenges associated with characterization of ADCs were summarized. It will provide reference for researching and quality control of ADCs.

Key words: Monoclonal antibody    Antibody-drug conjugate    Quality control
收稿日期: 2014-02-24 出版日期: 2014-04-25
ZTFLH:  R917  
基金资助:

国家“重大新药创制”科技重大专项(2014ZX09304311-001,2012ZX09304010)

通讯作者: 高凯     E-mail: gaokai@nifdc.org.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王兰, 夏懋, 高凯. 抗体偶联药物的研究进展与质量控制[J]. 中国生物工程杂志, 2014, 34(4): 85-94.

WANG Lan, XIA Mao, GAO Kai. The Development and Quality Control of Antibody-Drug Conjugates. China Biotechnology, 2014, 34(4): 85-94.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140414        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I4/85


[1] Perez H L, Cardarelli P M, Deshpande S, et al. Antibody-drug conjugates: current status and future directions. Drug Discov Today, 2013 Nov 15.
[Epub ahead of print].

[2] FDA. FDA news release: Pfizer voluntarily withdraws cancer treatment Mylotarg from U.S. market 2010,(http://www.fda.gov/%20NewsEvents/Newsroom/PressAnnouncements/ucm216448.htm).

[3] FDA. FDA news release: FDA approves Adcetris to treat two types of lymphoma.2011, (http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm268781.htm).

[4] FDA. FDA news release: FDA approves new treatment for late-stage breast cancer. 2013,(http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm340704.htm).

[5] Gerber H P, Koehn F E, Abraham R T. The antibody-drug conjugate: an enabling modality for natural product-based cancer therapeutics. Nat Prod Rep, 2013, 30 (5):625-639.

[6] Beck A, Reichert J M. Antibody-drug conjugates: Present and future. MAbs, 2014, 6 (1): 15-17.

[7] Wahl A F, Klussman K, Thompson J D, et al. The anti-CD30 monoclonal antibody SGN-30 promotes growth arrest and DNA fragmentation in vitro and affects antitumor activity in models of Hodgkin's disease. Cancer Res, 2002, 62 (13): 3736-3742.

[8] Slamon D J, Clark G M, Wong S G, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 1987, 235(4785):177-182.

[9] Thurber G M, Schmidt M M, Wittrup K D. Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev, 2008,60 (12): 1421-1434.

[10] Junttila T T, Li G, Parsons K, et al. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res Treat, 2011, 128 (2):347-356.

[11] McDonagh C F, Kim K M, Turcott E, et al. Engineered anti-CD70 antibody-drug conjugate with increased therapeutic index. Mol Cancer Ther, 2008, 7(9):2913-2923.

[12] DiJoseph J F, Doughr M M, Kalyandrug L B, et al. Antitumor efficacy of a combination of CMC-544 (inotuzumab ozogamicin), a CD22-targeted cytotoxic immunoconjugate of calicheamicin, and rituximab against non-Hodgkin's B-cell lymphoma. Clin Cancer Res, 2006, 12(1):242-249.

[13] Ricart A D. Antibody-drug conjugates of calicheamicin derivative: gemtuzumab ozogamicin and inotuzumab ozogamicin. Clin Cancer Res, 2011, 17 (20): 6417-6427.

[14] DiJoseph J F, Armellino D C, Boghaert E R, et al. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood, 2004, 103(5): 1807-1817.

[15] Senter P D, Sievers E L. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat Biotechnol, 2012, 30(7):631-637.

[16] Lewis Philips G D, Li G, Dugger D L, et al. Targeting HER2-positive breast cancer with transtuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res, 2008, 68(22):9280-9290.

[17] Alley S C, Benjamin D R, Jeffrey S C, et al. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem, 2008, 19(3):759-765.

[18] Wang L, Amphlett G, Blattler W A, et al. Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry. Protein Sci, 2005, 14(9):2436-2446.

[19] Hamblett K J, Senter P D, Chace D F, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res, 2004,10(20):7063-7070.

[20] Junutula J R, Raab H, Clark S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol, 2008, 26(8):925-932.

[21] Axup J Y, Baijuri K M, Ritland M, et al. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc Natl Acad Sci U S A, 2012, 109(40): 16101-16106.

[22] Hofer T, Skeffington L R, Chapman C M, et al. Molecularly defined antibody conjugation through a selenocysteine interface. Biochemistry, 2009,48(50):12047-12057.

[23] Stro P P, Liu S H, Dorywalska M, et al. Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol, 2013, 20(2): 161-167.

[24] Senter P D. Potent antibody drug conjugates for cancer therapy. Curr Opin Chem Biol, 2009, 13(3):235-244.

[25] Trail P A, Willner D, Lasch S J, et al. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science, 1993, 261(5118):212-215.

[26] Saleh M N, Sugarman S, Murray J, et al. Phase I trial of the anti-Lewis Y drug immunoconjugate BR96-doxorubicin in patients with lewis Y-expressing epithelial tumors. J Clin Oncol, 2000, 18(11):2282-2292.

[27] Casi G, Neri D. Antibody-drug conjugates: basic concepts, examples and future perspectives. J Control Release, 2012, 161(2):422-428.

[28] Alley S C, Okeley N M, Senter P D. Antibody-drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol, 2010, 14(4):529-537.

[29] Teicher B A, Chari R V. Antibody conjugate therapeutics: challenges and potential. Clin Cancer Res, 2011, 17(20): 6389-6397.

[30] Hartley J A. The development of pyrrolobenzodiazepines as antitumour agents. Expert Opin Investig Drugs, 2011, 20(6): 733-744.

[31] Nguyen V T, Giannoni F, Dubois M F, et al. In vivo degradation of RNA polymerase II largest subunit triggered by alpha-amanitin. Nucleic Acids Res, 1996, 24(15):2924-2929.

[32] Magdalan J, Ostrowska A, Piotrowska A, et al. alpha-Amanitin induced apoptosis in primary cultured dog hepatocytes. Folia Histochem Cytobiol, 2010,48(1):58-62.

[33] Moldenhauer G, Salnikov A V, Luttgau S, et al. Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. J Natl Cancer Inst, 2012, 104(8): 622-634.

[34] Sun M M, Beam K S, Cerveny C G, et al. Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjugate Chem, 2005,16 (5):1282-1290.

[35] McDonagh C F, Turcott E, Westendorf L, et al. Engineered antibody-drug conjugates with defined sites and stoichiometries of drug attachment. Protein Eng Des Sel, 2006, 19(7):299-307.

[36] Erickson H K, Park P U, Widdison W C, et al. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res, 2006, 66(8):4426-4433.

[37] Junutula J R, Raab H, Clark S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol, 2008, 26(8):925-932.

[38] Fleming M S, Zhang W, Lambert J M,et al. A reversed-phase high-performance liquid chromatography method for analysis of monoclonal antibody-maytansinoid immunoconjugates. Anal Biochem, 2005, 340(2):272-278.

[39] Francisco J A, Cerveny C G, Meyer D L, et al. cAC10-Val-CitMMAE, an anti-CD30- monomethyl auristatin E conjugate with potent and selective anti-tumor activity. Blood, 2003, 102(4):1458-1465.

[40] Doronina S O, Mendelsohn B A, Bovee T D, et al. Enhance activity of monomethylauristatin F through monoclonal antibody delivery: effect of linker technology on efficacy and toxicity. Bioconjug Chem, 2006, 17(1):114-124.

[41] Laguzza B C, Nichols C L, Briggs S L, et al. New antitumor monoclonal antibody-vinca conjugates LY203725 and related compounds: design, preparation, and representative in vivo activity. J Med Chem, 1989, 32(3):548-555.

[42] Phillips G D L, Li G, Dugger D L, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res, 2008, 68(22):9280-9290.

[43] Sanderson R J, Hering M A, James S F, et al. In vivo drug-linker stability of anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin Cancer Res, 2005, 11(2 Pt 1):843-852.

[44] Xu K, Saad O, Baudys J, et al. Bioanalytical strategies for antibody drug conjugate (ADC) biopharmaceutical development: characterization of trastuzumab-MCC-DM1 in plasma by affinity mass spectrometry. J Am Soc Mass Spec, 2007, 18(5): S11-S15.

[45] Valliere-Douglass J F, McFee W A, Salas-Solano O. Native intact mass determination of antibodies conjugated with monomethyl auristatin E and F at interchain cysteine residues. Anal Chem, 2012, 84(6):2843-2849.

[46] Hamblett K J, Senter P D, Chace D F, et al. Effects of drug loading on the anti-tumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res, 2004, 10(20):7063-7070.

[47] Siegel M M, Hollander I J, Hamann P R, et al. Matrix-assisted UV-laser desorption/ionization mass spectrometric analysis of monoclonal antibodies for the determination of carbohydrate, conjugated chelator, and conjugated drug content. Anal Chem, 1991, 63(21):2470-2481.

[48] Gazzano-Santoro H, Ralph P, Ryskamp T C, et al. A non-radioactive complementdependent cytotoxicity assay for anti-CD20 monoclonal antibody. J Immunol Methods, 1997, 202(2): 163-171.

[49] Ferrone S, Cooper N R, Pellegrino M A, et al. The lymphocytotoxic reaction: the mechanism of rabbit complement action. J Immunol, 1971, 107(4):939-947.

[50] Sharkey R M, Govindan S V, Cardillo T M, et al. Epratuzumab-SN-38: a new antibody-drug conjugate for the therapy of hematologic malignancies. Mol Cancer Ther, 2012, 11(1):224-234.

[51] 高凯, 徐志凯, 任跃明, 等. 关于我国药典单克隆抗体类生物治疗药物总论的思考. 中国生物工程杂志, 2014, 34(1):127-134. Gao K, Xu Z K, Ren Y M, et al. Points to consider for the general monograph of monoclonal antibody based biotherapeutics in Chinese Pharamacopeia. China Biotechnology, 2014, 34(1): 127-134.

[1] 陈文洁,苗先锋. 抗体偶联药物国内研发现状及企业布局分析[J]. 中国生物工程杂志, 2021, 41(6): 105-110.
[2] 史瑞,严景华. 抗新型冠状病毒单克隆中和抗体药物研发进展*[J]. 中国生物工程杂志, 2021, 41(6): 129-135.
[3] 武瑞君,李治非,张鑫,濮润,敖翼,孙燕荣. 新冠病毒抗体药物研发进展及展望分析[J]. 中国生物工程杂志, 2020, 40(5): 1-6.
[4] 吝建华,韩君,徐寒梅. PD-1/PD-L1免疫检查点抗体药物制剂稳定性开发[J]. 中国生物工程杂志, 2020, 40(10): 35-42.
[5] 刘国芳,刘晓志,高健,王志明. 宿主细胞残留蛋白质对单克隆抗体药物质量影响及其质量控制 *[J]. 中国生物工程杂志, 2019, 39(10): 105-110.
[6] 杜力,刘晓志,高健,王志明. 抗体药物免疫原性评估的研究进展[J]. 中国生物工程杂志, 2018, 38(2): 89-94.
[7] 黄怡,李晓宇,田芳,钱小红,应万涛. 质谱方法实现抗体类药物糖链修饰的鉴定与定量研究[J]. 中国生物工程杂志, 2018, 38(1): 32-41.
[8] 任华景, 刘晓志, 王志明, 高健. 中枢神经系统疾病治疗性抗体药物应用进展[J]. 中国生物工程杂志, 2016, 36(9): 54-58.
[9] 陈龙冠, 覃锦红, 黄云娜, 麦俊新, 谢秋玲. 信号肽优化对重组抗体分泌表达的影响及研究进展[J]. 中国生物工程杂志, 2016, 36(3): 77-81.
[10] 王佃亮. 细胞药物的标准及质量控制——细胞药物连载之四[J]. 中国生物工程杂志, 2016, 36(10): 115-121.
[11] 李星, 姚文兵, 徐晨. 聚乙二醇化重组蛋白药物的质量控制[J]. 中国生物工程杂志, 2015, 35(12): 109-114.
[12] 马杉姗, 马素永, 赵广荣. 中国抗体药物产业现状与发展前景[J]. 中国生物工程杂志, 2015, 35(12): 103-108.
[13] 刘伯宁. 治疗性单抗与抗体产业关键技术[J]. 中国生物工程杂志, 2013, 33(5): 132-138.
[14] 顾江, 邹全明. 治疗耐甲氧西林金黄色葡萄球菌感染的抗体药物[J]. 中国生物工程杂志, 2012, 32(02): 96-99.
[15] 张莹,何金生,洪涛. 重组抗体药物研究进展及应用[J]. 中国生物工程杂志, 2009, 29(08): 102-106.