Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (4): 78-84    DOI: 10.13523/j.cb.20140413
技术与方法     
溶胶凝胶法固定化黑曲霉脂肪酶的性质研究
李刚锐, 李林俐, 范翔, 孟延发
四川大学生命科学学院/生物资源与生态环境教育部重点实验室 成都 610064
Immobilization and Properties of Lipase from Aspergillus niger on Sol-gels,Hydrophobic Supports
LI Gang-rui, LI Lin-li, FAN Xang, MENG Yan-fa
College of Life Science, Key Laboratory of Bio-Resources and Eco-Environment Ministry of Education, Sichuan University, Chengdu 610064, China
 全文: PDF(700 KB)   HTML
摘要:

近年来溶胶-凝胶法固定脂肪酶已成为研究热点。选用TMOS、MTMS、ETMS和PTMS 4种硅烷试剂对黑曲霉脂肪酶进行了固定化研究。固定化的最佳配方为ETMS/TMOS=5:1、水与硅烷试剂分子比为8;固定化脂肪酶的固定率为80.2%、相对活性为136.3%;以乳化橄榄油作为底物,在50℃和pH4.0的条件下,固定化脂肪酶与游离脂肪酶Km分别为1.899×10-4M和2.789×10-4M;最适反应pH均为pH4.0,固定化脂肪酶在pH4.0~pH5.5之间其活性能保持95%以上;固定化脂肪酶最适反应温度为60℃,较游离脂肪酶提高了10℃;固定化脂肪酶的酸碱稳定性和热稳定性较非固定化酶有显著的提高。固定化脂肪酶的使用寿命和保存稳定性良好,使用12次后仍能够保留71.7%活性,在室温避光条件下保存180天后仍可保留79.2%活性。

关键词: 脂肪酶溶胶-凝胶固定化黑曲霉    
Abstract:

The study on immobilization of lipase by sol-gel has become research hotspot in recent years.The aim is to find the optimum conditions for the immobilization of lipase from Aspergillus niger and also to select the most suitable support maximizing the immobilized enzyme yield under these optimum conditions.TMOS,MTMS,ETMS,PTMS were used as the precursors in the preparation of encapsulated lipase from Aspergillus niger. The 80.2% of immobilized degree and the 136.3% of relative activity were obtained under optimum conditions, ETMS/TOMS=5:1 and molar ratio of water/silane = 8.With emulsified olive oil as substrate,the kinetics properties for immobilized enzyme were assessed as follows. The Km of immobilized lipase and free lipase in pH 4.0 and 50℃ conditions were detected to be 1.899×10-4 mol/L and 2.789×10-4mol/L by double reciprocal plot,Lineweaver-Burk plot, respectively. The optimum pH of immobilized lipase and free lipase were analyzed to be 4.0 in optimum temperature. The relative activity of immobilized lipase was found above 95% in the range of pH4.0 to pH5.5. The optimum temperature of immobilized lipase was observed at 60℃ which was 10℃ higher than free lipase. The pH stability and thermostability of immobilized lipase were obviously improved in comparison with free enzyme. When immobilized lipase was cyclically used for twelve of reactions, it still retained 71.7% of original activity. When the immobilized lipase was storaged in the dark at room temperature for 180 days, it maintained 79.2% of the initial activity.

Key words: Lipase    Sol-gel    Immobilization    Aspergillus niger
收稿日期: 2014-01-20 出版日期: 2014-04-25
ZTFLH:  Q814.2  
基金资助:

“十一五”国家科技支撑计划重点资助项目(2008BA163B07)

通讯作者: 孟延发     E-mail: yfmeng0902@scu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李刚锐, 李林俐, 范翔, 孟延发. 溶胶凝胶法固定化黑曲霉脂肪酶的性质研究[J]. 中国生物工程杂志, 2014, 34(4): 78-84.

LI Gang-rui, LI Lin-li, FAN Xang, MENG Yan-fa. Immobilization and Properties of Lipase from Aspergillus niger on Sol-gels,Hydrophobic Supports. China Biotechnology, 2014, 34(4): 78-84.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140413        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I4/78


[1] Fischer M, Pleiss J. The Lipase Engineering Database: a navigation and analysis tool for protein families. Nucleic acids research,2003, 31(1): 319-321.

[2] 冯超, 蒋丽娟, 黎继烈, 等. 固定化脂肪酶研究进展. 食品工业科技, 2011, 32(2): 373-378. Feng C, Jiang L J, Li J L, et al. Research progress in lipase immobilization. Science and Technology of Food Industry, 2011, 32(2): 373-378.

[3] Yang J, Ma X, Zhang Z, et al. Lipase immobilized by modification-coupled and adsorption-cross-linking methods: a comparative study. Biotechnology Advances, 2010, 28(5): 644-650.

[4] 刘晶, 王雪, 张佳宁, 等. 高碘酸钠氧化法固定化脂肪酶的研究. 中国粮油学报, 2012, 27(4): 68-73. Lin J, Wang X, Zhang J N, et al. Study on the lipase immobilization by means of sodium periodate oxidation. Journal of the Chinese Cereals and Oils Association, 2012, 27(4):68-73.

[5] 梁欣欣, 魏东. 新型交联剂三羟甲基磷固定化脂肪酶的研究. 现代食品科技, 2012, 28(1): 47-51. Liang X X, Wei D. Lipase Immobilization with a new crosslinking reagent Tris (hydroxymethyl) phosphine. Modern Food Science and Technology, 2012, 28(1): 47-51.

[6] Avnir D, Coradin T, Lev O, et al. Recent bio-applications of sol-gel materials. Journal of Materials Chemistry, 2006, 16(11): 1013-1030.

[7] Shi H, Meng Y, Yang M, et al. Purification and characterization of a hydrolysis-resistant lipase from Aspergillus terreus. Biotechnology and Applied Biochemistry, 2013,61(2):165-174.

[8] Flora K K, Brennan J D. Effect of matrix aging on the behavior of human serum albumin entrapped in a tetraethyl orthosilicate-derived glass.Chemistry of Materials, 2001, 13(11): 4170-4179.

[9] Reetz M T, Zonta A, Simpelkam PJ, et al. Characterization of hydrophobic sol-gel materials containing entrapped lipases. Journal of Sol-Gel Science and Technology, 1996, 7(1-2): 35-43.

[10] Soares C M F, dos Santos O A, Olivo J E, et al. Influence of the alkyl-substituted silane precursor on sol-gel encapsulated lipase activity. Journal of Molecular Catalysis B: Enzymatic, 2004, 29(1): 69-79.

[11] Dosanjh N S, Kaur J. Immobilization, stability and esterification studies of a lipase from a Bacillus sp. Biotechnology and Applied Biochemistry, 2002, 36(1): 7-12.

[12] Frenkel-Mullerad H, Avnir D. Sol-gel materials as efficient enzyme protectors: preserving the activity of phosphatases under extreme pH conditions. J American Chemical Society, 2005, 127(22): 8077-8081.

[13] Nguyen D T, Smit M, Dunn B, et al. Stabilization of creatine kinase encapsulated in silicate sol-gel materials and unusual temperature effects on its activity. Chemistry of Materials, 2002, 14(10): 4300-4306.

[1] 陈开通,郑文隆,杨立荣,徐刚,吴坚平. 氨基树脂固定化L-苏氨酸醛缩酶及其应用*[J]. 中国生物工程杂志, 2021, 41(9): 55-63.
[2] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[3] 周惠颖,周翠霞,张婷,王雪雨,张会图,冀颐之,路福平. 强化底物利用酶系表达,提升地衣芽孢杆菌生产碱性蛋白酶性能[J]. 中国生物工程杂志, 2021, 41(2/3): 53-62.
[4] 魏子翔,张柳群,雷磊,韩正刚,杨江科. 疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计提高其活性和温度稳定性[J]. 中国生物工程杂志, 2021, 41(2/3): 63-69.
[5] 杨运松,梁金花,杨晓瑞,马艺鸣,金爽,孙姚瑶,朱建良. 柴油生物酶催化氧化脱硫的研究进展[J]. 中国生物工程杂志, 2021, 41(10): 109-115.
[6] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[7] 董璐,张继福,张云,胡云峰. 环氧树脂固定化的Bacillus sp. DL-2胞外蛋白酶在拆分(±)-乙酸苏合香酯中的应用 *[J]. 中国生物工程杂志, 2020, 40(4): 49-58.
[8] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[9] 朱衡,林海蛟,张继福,张云,孙爱君,胡云峰. 氨基载体共价结合固定化海洋假丝酵母脂肪酶 *[J]. 中国生物工程杂志, 2019, 39(7): 71-78.
[10] 巩凤芹,刘启顺,谭海东,金花,谭成玉,尹恒. MOFs固定5-羟甲基糠醛氧化酶及其催化活性的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 41-47.
[11] 林海蛟,张继福,张云,孙爱君,胡云峰. 添加剂对大孔吸附树脂固定化脂肪酶的影响 *[J]. 中国生物工程杂志, 2019, 39(4): 38-51.
[12] 张颖,王莹,杨立荣,吴坚平. DA-F127水凝胶包埋固定化含腈水合酶细胞[J]. 中国生物工程杂志, 2019, 39(11): 70-77.
[13] 孙帆,宿玲恰,张康,吴敬. D-阿洛酮糖 3-差向异构酶在枯草芽孢杆菌中的高效表达及固定化细胞研究 *[J]. 中国生物工程杂志, 2018, 38(7): 83-88.
[14] 杜凯,张卓玲,李婷华,饶微. 抗体固定化方法研究进展[J]. 中国生物工程杂志, 2018, 38(4): 78-89.
[15] 石红璆,查代明,张炳火,李汉全. 全细胞脂肪酶研究进展 *[J]. 中国生物工程杂志, 2018, 38(11): 51-58.