Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (4): 41-45    DOI: 10.13523/j.cb.20140407
研究报告     
重组酿酒酵母催化二氢大豆苷元生产雌马酚
刘玉雪1,2, 张祎昕1, 王磊1, 林心萍1, 朱志伟1, 赵宗保1
1. 中国科学院大连化学物理研究所生物技术部 大连 116023;
2. 中国科学院大学 北京 100049
Formation of Equol from Dihydrodaidzein by Recombinant Saccharomyces cerevisiae
LIU Yu-xue1,2, ZHANG Yi-xin1, WANG Lei1, LIN Xin-ping1, ZHU Zhi-wei1, ZHAO Zong-bao1
1. Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
2. University of Chinese Academy of Science, Beijing 100049, China
 全文: PDF(562 KB)   HTML
摘要:

雌马酚是大豆异黄酮的代谢产物,是一种天然的选择性雌激素受体调节剂,稳定性和生物学活性高。为实现雌马酚的微生物合成,采用模块途径工程策略,构建编码雌马酚合成关键酶基因 orf-1、orf-2orf-3 的表达载体,成功用于转化酿酒酵母BY4741,得到工程菌株。结果表明,工程菌株有效表达了外源基因,并可将大豆异黄酮代谢中间体二氢大豆苷元转化为雌马酚。为构建从头合成雌马酚的微生物细胞工厂提供了重要科学参考。

关键词: 雌马酚二氢大豆苷元酿酒酵母生物催化    
Abstract:

Equol is an active and stable phytoestrogen. It can be produced by microbial conversion of a known compound daidzein. A recombinant Saccharomyces cerevisiae strain was constructed, which harbored a plasmid enabling expression of genes orf-1, orf-2 and orf-3 for the conversion of daidzein into equol. It was found that the recombinant strain was able to convert dihydrodaidzein, the immediate downstream product of the reaction sequence, into equol. The results provided valuable information for the construction of yeast cell factory for de novo biosynthesis of equol.

Key words: Equol    Dihydrodaidzein    Saccharomyces cerevisiae    Biocatalysis
收稿日期: 2014-03-11 出版日期: 2014-04-25
ZTFLH:  Q812  
通讯作者: 赵宗保     E-mail: zhaozb@dicp.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘玉雪, 张祎昕, 王磊, 林心萍, 朱志伟, 赵宗保. 重组酿酒酵母催化二氢大豆苷元生产雌马酚[J]. 中国生物工程杂志, 2014, 34(4): 41-45.

LIU Yu-xue, ZHANG Yi-xin, WANG Lei, LIN Xin-ping, ZHU Zhi-wei, ZHAO Zong-bao. Formation of Equol from Dihydrodaidzein by Recombinant Saccharomyces cerevisiae. China Biotechnology, 2014, 34(4): 41-45.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140407        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I4/41


[1] Song W O, Chun O K, Hwang I, et al. Soy isoflavones as safe functional ingredients. J Med Food, 2007, 10: 571-580.

[2] Setchell K D R, Brown N M, Lydeking-Olsen E. The clinical importance of the metabolite equol-A clue to the effectiveness of soy and its isoflavones. J Nutr, 2002, 132: 3577-3584.

[3] Muthyala R S, Ju Y H, Sheng S B, et al. Equol, a natural estrogenic metabolite from soy isoflavones: convenient preparation and resolution of R- and S-equols and their differing binding and biological activity through estrogen receptors alpha and beta. Bioorg Med Chem, 2004, 12(6): 1559-1567.

[4] Gharpure S J, Sathiyanarayanan A M, Jonnalagadda P. O-Quinone methide based approach to isoflavans: application to the total syntheses of equol, 3'-hydroxyequol and vestitol. Tetrahedron Lett, 2008, 49(18): 2974-2978.

[5] Li S R, Chen PY, Chen L Y, et al. Synthesis of haginin E, equol, daidzein, and formononetin from resorcinol via an isoflavene intermediate. Tetrahedron Lett, 2009, 50(18): 2121-2123.

[6] Heemstra J M, Kerrigan S A, Doerge D R, et al. Total synthesis of S-equol. Org Lett, 2006, 8: 5441-5443.

[7] Takashima Y, Kaneko Y, Kobayashi Y. Synthetic access to optically active isoflavans by using allylic substitution. Tetrahedron, 2010, 66(1): 197-207.

[8] Walsh K R, Failla M L. Transport and metabolism of equol by Caco-2 human intestinal cells. J Agric Food Chem, 2009, 57: 8297-8302.

[9] Jackson R L, Greiwe J S, Schwen R J. Emerging evidence of the health benefits of S-equol, an estrogen receptor beta agonist. Nutr Rev, 2011, 69 (8): 432-448.

[10] Setchell K D, Clerici C. Equol: history, chemistry, and formation. J Nutr, 2010, 140(7): 1355S-1362S.

[11] Schroder C, Matthies A, Engst W, et al. Identification and expression of genes involved in the conversion of daidzein and genistein by the equol-forming bacterium Slackia isoflavoniconvertens. Appl Environ Microbiol, 2013, 79(11): 3494-3502.

[12] Du H, Huang Y, Tang Y. Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl Microbiol Biotechnol, 2010, 86(5): 1293-1312.

[13] Tsuji H, Moriyama K, Nomoto K, et al. Identification of an enzyme system for daidzein-to-equol conversion in Slackia sp. strain NATTS. Appl Environ Microbiol, 2012, 78(4): 1228-1236.

[14] Zhou Y J, Gao W, Rong Q, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc, 2012, 134(6): 3234-3241.

[15] Shimada Y, Yasuda S, Takahashi M, et al. Cloning and expression of a novel NADP(H)-dependent daidzein reductase, an enzyme involved in the metabolism of daidzein, from equol-producing Lactococcus strain 20-92. Appl Environ Microbiol, 2010, 76(17): 5892-5901.

[1] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[2] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[3] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[4] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[5] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.
[6] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[7] 胡艳红,龚雪梅,丁柳柳,高嵩,李婷婷. 利用短短芽孢杆菌进行酮还原酶CgKR2的高效表达与纯化 *[J]. 中国生物工程杂志, 2019, 39(8): 59-65.
[8] 巩凤芹,刘启顺,谭海东,金花,谭成玉,尹恒. MOFs固定5-羟甲基糠醛氧化酶及其催化活性的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 41-47.
[9] 李检秀,陈先锐,陈小玲,黄艳燕,莫棋文,谢能中,黄日波. 应用合成生物学策略构建全细胞生物催化剂合成(S)-乙偶姻 *[J]. 中国生物工程杂志, 2019, 39(4): 60-68.
[10] 张正坦,朱婧,谢志平. 酿酒酵母全基因组SNARE蛋白的亚细胞定位研究 *[J]. 中国生物工程杂志, 2019, 39(10): 44-57.
[11] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[12] 黄俊,吴仁智,陆琦,芦志龙. 酿酒酵母木糖转运基因研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 109-115.
[13] 唐存多,史红玲,马越,丁朋举,许建和,阚云超,姚伦广. 新型R-扁桃酸脱氢酶的基因挖掘及表达鉴定 *[J]. 中国生物工程杂志, 2018, 38(2): 30-37.
[14] 张伟, 刘夺, 李炳志, 元英进. 产对香豆酸酿酒酵母菌株的构建及优化[J]. 中国生物工程杂志, 2017, 37(9): 89-97.
[15] 李博, 梁楠, 刘夺, 刘宏, 王颖, 肖文海, 姚明东, 元英进. 合成8二甲基异戊烯基柚皮素的人工酿酒酵母菌株构建[J]. 中国生物工程杂志, 2017, 37(9): 71-81.