Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (3): 115-124    DOI: 10.13523/j.cb.20140317
综述     
间充质干细胞分化为心肌细胞的诱导方法研究进展
井乐刚, 乔静, 路芳, 甄鑫, 卢嫚, 艾燕
哈尔滨师范大学生命科学与技术学院 哈尔滨 150025
Progress in Condition of Mesenchymal Stem Cells Differentiation into Cardiomyocytes
JING Le-gang, QIAO Jing, LU Fang, ZHEN Xin, LU Man, AI Yan
College of Life Science and Technology, Harbin Normal University, Haerbin 150025, China
 全文: PDF(530 KB)   HTML
摘要: 间充质干细胞作为一种取材方便、易于分离培养、体外扩增快、免疫原性低的成体干细胞,具有自我更新和多向分化潜能,可在体内外不同的诱导条件下分化为心肌细胞,是理想的心肌再生治疗的种子细胞。本文综述了间充质干细胞分化为心肌细胞的诱导方法,包括化学试剂、中药制剂、机械力和电磁刺激、心肌环境因子、损伤组织条件培养、组织工程方法等,为其在心肌损伤性疾病尤其是心肌梗死治疗中的应用提供基础。
关键词: 间充质干细胞心肌细胞分化    
Abstract: Mesenchymal Stem Cells (MSCs) are regarded as typical adult stem cells which have the ability of self-renewal and multilineage differentiation potential. They can be easily isolated, cultured and expanded, and they have low immunogenicity. Particularly, MSCs can be induced to differentiate into cardiomyocytes (CMs) in different conditions in vivo or in vitro, and therefore they are ideal seed cells in cellular therapy for heart disease. In this article the methods of inducing differentiation of MSCs into cardiomyocytes are reviewed, including chemical reagents, traditional Chinese medicines, mechanical stress and electromagnetic stimulation, myocardial microenvironment, injured tissue conditioned media, tissue engineering and so on, to provide foundation for applying MSCs to therapy of heart diseases caused by myocardial damage, especially myocardial infarction.
Key words: Mesenchymal stem cells    Cardiomyocytes    Differentiation
收稿日期: 2013-10-30 出版日期: 2014-03-25
ZTFLH:  Q21  
基金资助: 黑龙江省自然科学基金项目 (C201236),黑龙江省教育厅科学技术研究 (12531177)资助项目
通讯作者: 井乐刚     E-mail: jlgachxy@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
井乐刚
乔静
路芳
甄鑫
卢嫚
艾燕

引用本文:

井乐刚, 乔静, 路芳, 甄鑫, 卢嫚, 艾燕. 间充质干细胞分化为心肌细胞的诱导方法研究进展[J]. 中国生物工程杂志, 2014, 34(3): 115-124.

JING Le-gang, QIAO Jing, LU Fang, ZHEN Xin, LU Man, AI Yan. Progress in Condition of Mesenchymal Stem Cells Differentiation into Cardiomyocytes. China Biotechnology, 2014, 34(3): 115-124.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140317        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I3/115

[1] Chang W, Lim S, Song B W, et al. Phorbol myristate acetate differentiates human adipose-derived mesenchymal stem cells into functional cardiogenic cells. Biochem Biophys Res Commun, 2012, 424(4): 740-746.
[2] Williams A R, Hare J M. Mesenchymal stem cells: Biology, patho-physiology, translational findings, and therapeutic implications for cardiac disease. Circ Res, 2011, 109(8): 923-940.
[3] Choi Y H, Kurtz A, Stamm C. Mesenchymal stem cells for cardiac cell therapy. Hum Gene Ther, 2011, 22(1): 3-17.
[4] Kim S H, Moon H H, Kim H A, et al. Hypoxia-inducible vascular endothelial growth factor-engineered mesenchymal stem cells prevent myocardial ischemic injury. Mol Ther, 2011, 19(4): 741-750.
[5] Li Q, Turdi S, Thomas D P, et al. Intra-myocardial delivery of mesenchymal stem cells ameliorates left ventricular and cardiomyocyte contractile dysfunction following myocardial infarction.Toxicol Lett, 2010, 195(2-3): 119-126.
[6] Serrao G W, Turnbull I C, Ancukiewicz D, et al. Myocyte-depleted engineered cardiac tissues support therapeutic potential of mesenchymal stem cells. Tissue Eng Part A, 2012, 18(13-14): 1322-1333.
[7] Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest, 1999, 103(5): 697-705.
[8] Qian Q, Qian H, Zhang X, et al. 5-Azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase. Stem Cells Dev, 2012, 21(1): 67-75
[9] Carvalho PH, Daibert A P, Monteiro B S, et al. Differentiation of adipose tissue-derived mesenchymal stem cells into cardiomyocytes. Arq Bras Cardiol, 2013, 100(1): 82-89
[10] Hou J, Lü A L, Liu B W, et al. The combination of BMP-2 and 5-AZA is advantageous in rat bone marrow-derived mesenchymal stem cells differentiation into cardiomyocytes. Cell Biol Int, 2013, 37(12): 1291-1299.
[11] Mohanty S, Bose S, Jain K G, et al. TGFβ1 contributes to cardiomyogenic-like differentiation of human bone marrow mesenchymal stem cells. Int J Cardiol, 2013, 163(1): 93-99.
[12] Shinmura D, Togashi I, Miyoshi S, et al. Pretreatment of human mesenchymal stem cells with pioglitazone improved efficiency of cardiomyogenic transdifferentiation and cardiac function. Stem Cells, 2011, 29(2): 357-366.
[13] Zhao Z, Chen Z, Zhao X, et al. Sphingosine-1-phosphate promotes the differentiation of human umbilical cord mesenchymal stem cells into cardiomyocytes under the designated culturing conditions. J Biomed Sci, 2011, 18(1): 37-45.
[14] Song H, Hwang H J, Chang W, et al. Cardiomyocytes from phorbol myristate acetate-activated mesenchymal stem cells restore electromechanical function in infarcted rat hearts. Proc Natl Acad Sci U S A, 2011, 108(1): 296-301.
[15] Park E, Patel A N. PKC-delta induces cardiomyogenic gene expression in human adipose-derived stem cells. Biochem Biophys Res Commun, 2010, 393(4): 582-586.
[16] Chang J, Cheng J, Jia F, et al. Transdifferentiation of fetal liver-delivered mesenchymal stem cells into cardiomyocyte-like cells. South China Journal of Cardiology, 2006, 7(2): 78-85.
[17] Feng C, Zhu J, Zhao L, et al. Suberoylanilide hydroxamic acid promotes cardiomyocyte differentiation of rat mesenchymal stem cells. Exp Cell Res, 2009, 315(17): 3044-3051.
[18] Yang G, Tian J, Feng C, et al. Trichostatin A promotes cardiomyocyte differentiation of rat mesenchymel stem cells after 5-azacytidine induction or during co-culture with neonatal cardiomyocytes via a mechanism independent of histone deacetylase inhibition. Cell Transplant, 2012, 21(5): 985-996.
[19] Choi Y S, Dusting G J, Stubbs S, et al. Differentiation of human adipose-derived stem cells into beating cardiomyocytes. J Cell Mol Med, 2010, 14(4): 878-889.
[20] Yan X B, Lv A L, Xing Y J, et al. Inhibition of p53-p21 pathway could promote the differentiation of rat bone marrow mesenchymal stem cells into cardiomyocytes. J Mol Cell Biochem 2011; 354(1-2): 21-28.
[21] Ventura C, Cantoni S, Bianchi F, et al. Hyaluronan mixed esters of butyric and retinoic acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infarcted rat hearts. J Biol Chem, 2007, 282(19): 14243-14252.
[22] Rebelatto C K, Aguiar A M, Senegaglia A C, et al. Expression of cardiac function genes in adult stem cells is increased by treatment with nitric oxide agents. Biochem Biophys Res Commun, 2009, 378(3): 456-461.
[23] Muscari C, Bonafé F, Carboni M, et al. Difluoromethylornithine stimulates early cardiac commitment of mesenchymal stem cells in a model of mixed culture with cardiomyocytes. J Cell Biochem, 2008, 103(4): 1046-1052.
[24] 武重阳, 孙兰军, 赵英强, 等. 复方丹参滴丸含药血清诱导大鼠骨髓间充质干细胞分化为心肌样细胞. 中国老年学杂志, 2010, 30(16): 2328-2330. Wu CH Y, Sun L J, Zhao Y Q, et al. Differentiation of rat bone marrow mesenchymal stem cells into cardiomyocyte-like cells induced by serum containing compound Danshen dripping pills. Chinese Journal of Gerontology, 2010, 30(16): 2328-2330.
[25] Li K, Li S Z, Zhang Y L, et al. The effects of dan-shen root on cardiomyogenic differentiation of human placenta-derived mesenchymal stem cells. Biochem Biophys Res Commun, 2011, 415(1): 147-151.
[26] Fan X, Li X, Lv S, et al. Comparative proteomics research on rat MSCs differentiation induced by Shuanglong Formula. J Ethnopharmacol, 2010, 131(3): 575-580.
[27] 杨忠奇, 冼绍祥, 汪朝晖, 等. 三七总皂苷对骨髓间充质干细胞分化为心肌样细胞的作用. 中药新药与临床药理, 2006, 17(4): 239-242. Yang ZH Q, Xian SH X, Wang ZH H, et al. Effects of Panax notoginseng saponins on the differentiation of marrow mesenchymal stem cells into cardiomyocyte-like cells. Traditional Chinese Drug Research & Clinical Pharmacology, 2006, 17(4): 239-242.
[28] 汪朝晖, 冼绍祥, 杨忠奇, 等. 人参总皂甙诱导骨髓间充质干细胞分化为心肌样细胞的实验研究. 广州中医药大学学报, 2006, 23(2): 100-103. Wang ZH H, Xian SH X, Yang ZH Q, et al. Inductive effect of ginsenosides on differentiation of rat marrow mesenchymal stem cells into myocardial cells in vitro. Journal of Guangzhou University of Traditional Chinese Medicine, 2006, 23(2): 100-103.
[29] 冼绍祥, 杨忠奇, 汪朝晖, 等. 黄芪甲苷体外诱导骨髓间充质干细胞分化为心肌样细胞的实验研究. 广州中医药大学学报, 2007, 24(1): 37-40. Xian SH X, Yang ZH Q, Wang ZH H, et al. An experimental study on astragaloside inducing bone marrow mesenchymal stem cells to differentiate into cardiomyogenic cells in vitro. Journal of Guangzhou University of Traditional Chinese Medicine, 2007, 24(1): 37-40.
[30] 陈嘉, 孙京臣, 邹移海, 等. 丹酚酸B诱导骨髓间充质干细胞向心肌样细胞分化. 第四军医大学学报, 2007, 28(2): 2152-2155. Chen J, Sun J CH, Zou Y H, et al. Differentiation of marrow mesenchymal stem cells into cardiomyocyte-like cells induced by salvianolic acid B. J Fourth Mil Med Univ, 2007, 28(2): 2152-2155.
[31] 刘韶英. 淫羊藿苷对骨髓间充质干细胞增殖及向心肌细胞分化的影响. 北京:北京中医药大学, 2008. Liu SH Y. Effect of IcarⅡn on Proliferation of Bone Marrow Mesenchymal Stem Cells and Their Differentiation into Cardiomyocytes. Beijing:Beijing University of Chinese Medicine, 2008.
[32] 谢玲玲. 淫羊藿苷诱导骨髓间充质干细胞分化心肌样细胞的实验研究. 广州:广州中医药大学, 2008. Xie L L. Experimental Study on Cardiomyocyte-like Cells Induced by IcarⅡn in vitro from Bone Marrow Mesenchymal Stem Cells.Guangzhou: Guangzhou University of Chinese Medicine, 2008.
[33] 王新华, 王士雯, 李泱, 等. 地黄低聚糖诱导骨髓间充质干细胞向心肌样细胞分化的实验研究. 解放军医学杂志, 2009, 34(4): 412-414. Wang X H, Wang SH W, Li Y, et al. Effects of Rehmannia glutinosa oligosaccharides on differentiation of mesenchymal stem cells into cardiomyocyte-like cells in vitro. Med J Chin PLA, 2009, 34(4): 412-414.
[34] 彭鹏, 莫烨华, 林晓莉, 等. 植物源性活性因子促进骨髓间充质干细胞向心肌细胞的分化. 中国组织工程研究与临床康复, 2011, 15(14): 2535-2539. Peng P, Mo Y H, Lin X L, et al. A natural activity factor promotes cardiogenic differentiation of bone marrow derived mesenchymal stem cells. Journal of Clinical Rehabilitative Tissue Engineering Research, 2011, 15(14): 2535-2539.
[35] Lin X, Peng P, Cheng L, et al. A natural compound induced cardiogenic differentiation of endogenous MSCs for repair of infarcted heart. Differentiation, 2012, 83(1): 1-9.
[36] Li M, Yu C M, Cheng L, et al. Repair of infarcted myocardium by an extract of Geum japonicum with dual effects on angiogenesis and myogenesis. Clin Chem, 2006, 52(8): 1460-1468.
[37] Huang Y, Jia X, Bai K, et al. Effect of fluid shear stress on cardiomyogenic differentiation of rat bone marrow mesenchymal stem cells. Arch Med Res, 2010, 41(7): 497-505.
[38] Huang Y, Zheng L, Gong X, et al. Effect of cyclic strain on cardiomyogenic differentiation of rat bone marrow derived mesenchymal stem cells. PLoS One, 2012, 7(4): e34960.
[39] 黄艳, 樊瑜波. 剪切应力与心肌细胞裂解液联合诱导骨髓间充质干细胞向心肌分化的研究. 医用生物力学, 2011, 26(3): 211-216. Huang Y, Fan Y B. Research on cardiomyogenic differentiation of bone marrow mesenchymal stem cells induced by shear stress combined with lysate of myocardial cells. J Med Biomecha, 2011, 26(3): 211-216.
[40] Bhang S K, Gwak S J, Lee T J, et al. Cyclic mechanical strain promotes transforming-growth-factor-β1-mediated cardiomyogenic marker expression in bone-marrow-derived mesenchymal stem cells in vitro. Biotechnol Appl Biochem, 2010, 55(4): 191-197.
[41] Huang Y, Dai Z Q, Ling S K, et al. Gravity, a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells. J Biomed Sci, 2009, 16(1):87-100.
[42] Ling S K, Wang R, Dai Z Q, et al. Pretreatment of rat bone marrow mesenchymal stem cells with a combination of hypergravity and 5-azacytidine enhances therapeutic efficacy for myocardial infarction. Biotechnol Prog, 2011, 27(2): 473-482.
[43] 严中琴, 杨刚, 崔燎, 等. 电刺激促骨髓间充质干细胞向心肌样细胞分化. 生物医学工程学杂志, 2013, 30(3): 556-561. Yan ZH Q, Yang G, Cui L, et al. Effects of electrical stimulation on the differentiation of mesenchymal stem cells into cardiomyocyte-like cells. Journal of Biomedical Engineering, 2013, 30(3): 556-561.
[44] 冯贤, 何学令, 李凯, 等. 脉冲电磁场诱导大鼠骨髓间充质干细胞体外心肌样细胞分化的研究. 生物医学工程学杂志, 2011, 28(4): 676-682. Feng X, He X L, Li K, et al. The effects of pulsed electromagnetic fields on the induction of rat bone marrow mesenchymal stem cells to differentiate into cardiomyocytes-like cells in vitro. Journal of Biomedical Engineering, 2011, 28(4): 676-682.
[45] Zhu Y, Liu T, Song K, et al. ADSCs differentiated into cardiomyocytes in cardiac microenvironment. Mol Cell Biochem, 2009, 324(1-2): 117-129.
[46] Yoon J, Shim W J, Ro Y M, et al. Transdifferentiation of mesenchymal stem cells into cardiomyocytes by direct cell-to-cell contact with neonatal cardiomyocyte but not adult cardiomyocytes. Ann Hematol, 2005, 84(11): 715-721.
[47] Li H, Yu B, Zhang Y, et al. Jagged1 protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes. Biochem Biophys Res Commun, 2006, 341(2): 320-325.
[48] Wang T, Xu Z, Jiang W, et al. Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell. Int J Cardiol, 2006, 109(1): 74-81.
[49] Gallo M P, Ramella R, Alloatti G, et al. Limited plasticity of mesenchymal stem cells cocultured with adult cardiomyocytes. J Cell Biochem, 2007, 100(1): 86-99.
[50] He X, Chen M, Li S, et al. Co-culture with cardiomyocytes enhanced the myogenic conversion of mesenchymal stromal cells in a dose-dependent manner. Mol Cell Biochem, 2010, 339(1-2): 89-98.
[51] Armián A, Gandía C, Bartual M, et al. Cardiac differentiation is driven by NKX2.5 and GATA4 nuclear translocation in tissue-specific mesenchymal stem cells. Stem Cells Dev, 2009, 18(6): 907-918.
[52] Valarmathi M T, Fuseler J W, Goodwin R L, et al. The mechanical coupling of adult marrow stromal stem cells during cardiac regeneration assessed in a 2-D co-culture model. Biomaterials, 2011, 32(11): 2834-2850.
[53] Plotnikov E Y, Khryapenkova T G, Vasileva A K, et al. Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. J Cell Mol Med, 2008, 12(5A): 1622-1631.
[54] Nishiyama N, Miyoshi S, Hida N, et al. The significant cardiomyogenic potential of human umbilical cord blood-derived mesenchymal stem cells in vitro. Stem Cells, 2007, 25(8): 2017-2024.
[55] Li X, Yu X, Lin Q, et al. Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment. J Mol Cell Cardiol, 2007, 42(2): 295-303.
[56] 张卫泽, 樊艳, 陈永清, 等. 血管紧张素Ⅱ诱导成人脂肪间充质干细胞分化为心肌样细胞的实验研究. 第三军医大学学报, 2008, 30(19): 1795-1798. Zhang W Z, Fan Y, Chen Y Q, et al. Angiotensin Ⅱ induces adult adipose-derived mesenchymal stem cells to differentiate into cardiocyte-like cells. J Third Milit Med Univ, 2008, 30(19): 1795-1798.
[57] Song K, Wang Z, Li W, et al. In vitro culture, determination, and directed differentiation of adult adipose-derived stem cells towards cardiomyocyte-like cells induced by angiotensin Ⅱ. Appl Biochem Biotechnol, 2013, 170(2): 459-470.
[58] Xing Y, Lv A, Wang L, et al. The combination of angiotensin Ⅱ and 5-azacytidine promotes cardiomyocyte differentiation of rat bone marrow mesenchymal stem cells. Mol Cell Biochem, 2012, 360(1-2): 279-287.
[59] Numasawa Y, Kimura T, Miyoshi S, et al. Treatment of human mesenchymal stem cells with angiotensin receptor blocker improved efficiency of cardiomyogenic transdifferentiation and improved cardiac function via angiogenesis. Stem Cells, 2011, 29(9): 1405-1414.
[60] Gwak S J, Bhang S H, Yang H S, et al. In vitro cardiomyogenic differentiation of adipose-derived stromal cells using transforming growth factor-β1. Cell Biochem Funct, 2009, 27(3): 148-154.
[61] 章培军, 张丽红, 郭敏芳. 骨髓间充质干细胞体外诱导分化为心肌样细胞. 实用医学杂志, 2010, 26(6): 957-959. Zhang P J, Zhang L H, Guo M F. Inducing bone mesenchymal stem cells to differentiate into cardiomyocyte-like cells in vitro. The Journal of Practical Medicine, 2010, 26(6): 957-959.
[62] 吴振宇. 肝细胞生长因子浓度对人骨髓间充质干细胞向心肌样细胞分化的影响. 郑州:郑州大学, 2009. Wu ZH Y. The Effect of Hepatocyte Growth Factor Concentration on Differentiation of Human Bone Marrow Mesenchymal Stem Cells to Cardiomyocyte-like Cells.Zhengzhou: Zhengzhou University, 2009.
[63] Zhang Z, Li H, Ma Z, et al. Efficient cardiomyogenic differentiation of bone marrow mesenchymal stromal cells by combination of Wnt11 and bone morphogenetic protein 2. Exp Biol Med, 2012, 237(7): 768-776.
[64] Grajales L, García J, Geenen D L. Induction of cardiac myogenic lineage development differs between mesenchymal and satellite cells and is accelerated by bone morphogenetic protein-4. J Mol Cell Cardiol, 2012, 53(3): 382-391.
[65] Wang Y, Zhang D, Ashraf M, et al. Combining neuropeptide Y and mesenchymal stem cells reverses remodeling after myocardial infarction. Am J Physiol Heart Circ Physiol, 2010, 298(1): H275-H286.
[66] Chen X, Zeng Z, Zhou B, et al. Effects of cardiotrophin-1 on differentiation and maturation of rat bone marrow mesenchymal stem cells induced with 5-azacytidine in vitro. Int J Cardiol, 2010, 143(2): 171-177.
[67] Bartunek J, Croissant J D, Wijns W, et al. Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium. Am J Physiol Heart Circ Physiol, 2007, 292(2): H1095-H1104.
[68] Hahn J Y, Cho H J, Kang H J, et al. Pretreatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. J Am Coll Cardiol, 2008, 51(9): 933-943.
[69] Asumda F Z and Chase PB. Age-related changes in rat bone-marrow mesenchymal stem cell plasticity. BMC Cell Biology, 2011, 12(1): 44-54.
[70] Huang Y, Qiu R, Mai W, et al. Effects of insulin-like growth factor-1 on the properties of mesenchymal stem cells in vitro. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 2012, 13(1): 20-28
[71] Li Z, Gu T, Zhang Y. Hepatocyte growth factor combined with insulin like growth factor-1 improves expression of GATA-4 in mesenchymal stem cells cocultured with cardiomyocytes. Chin Med J, 2008, 121(4): 336-340.
[72] Schimrosczyk K, Song Y H, Vykoukal J, et al. Liposome-mediated transfection with extract from neonatal rat cardiomyocytes induces transdifferentiation of human adipose-derived stem cells into cardiomyocytes. Scand J Clin Lab Invest, 2008, 68(6): 464-472.
[73] Labovsky V, Hofer E L, Feldman L, et al. Cardiomyogenic differentiation of human bone marrow mesenchymal cells: Role of cardiac extract from neonatal rat cardiomyocytes. Differentiation, 2010, 79(2): 93-101.
[74] Perán M, Marchal J A, López E, et al. Human cardiac tissue induces transdifferentiation of adult stem cells towards cardiomyocytes. Cytotherapy, 2010, 12(3): 332-337.
[75] Ramesh B, Bishi D K, Rallapalli S, et al. Ischemic cardiac tissue conditioned media induced differentiation of human mesenchymal stem cells into early stage cardiomyocytes. Cytotechnology, 2012, 64(5): 563-575.
[76] Chang S A, Lee E J, Kang H J, et al. Impact of myocardial infarct proteins and oscillating pressure on the differentiation of mesenchymal stem cells: effect of acute myocardial infarction on stem cell differentiation. Stem Cells, 2008, 26(7): 1901-1912.
[77] Ge D, Liu X, Li I, et al. Chemical and physical stimuli induce cardiomyocyte differentiation from stem cells. Biochem Biophys Res Commun, 2009, 381(3): 317-321.
[78] Xie X, Wang J, Cao J, et al. Differentiation of bone marrow mesenchymal stem cells induced by myocardial medium under hypoxic conditions. Acta Pharmacologica Sinica, 2006, 27 (9): 1153-1158.
[79] Valarmathi M T, Goodwin R L, Fuseler J W, et al. A 3-D cardiac muscle construct for exploring adult marrow stem cell based myocardial regeneration. Biomaterials, 2010, 31(12): 3185-3200.
[80] Santiago J A, Pogemiller R, Ogle B M. Heterogeneous differentiation of human mesenchymal stem cells in response to extended culture in extracellular matrices. Tissue Engineering: Part A, 2009, 15(12): 3911-3922.
[81] Tan G, Shim W, Gu Y, et al. Differential effect of myocardial matrix and integrins on cardiac differentiation of human mesenchymal stem cells. Differentiation, 2010, 79(4-5): 260-271.
[82] van Dijk A, Niessen H W, Zandieh Doulabi B, et al. Differentiation of human adipose-derived stem cells towards cardiomyocytes is facilitated by laminin. Cell Tissue Res, 2008, 334(3): 457-467.
[83] Tan M Y, Zhi W, Wei R Q, et al. Repair of infarcted myocardium using mesenchymal stem cell seeded small intestinal submucosa in rabbits. Biomaterials, 2009, 30(19): 3234-3240.
[84] Guan J, Wang F, Li Z, et al. The stimulation of the cardiac differentiation of mesenchymal stem cells in tissue constructs that mimic myocardium structure and biomechanics. Biomaterials, 2011, 32(24): 5568-5580.
[85] Tian L, Prabhakaran M P, Ding X, et al. Emulsion electrospun nanofibers as substrates for cardiomyogenic differentiation of mesenchymal stem cells. J Mater Sci Mater Med, 2013, 24(11): 2577-2587.
[86] Li Z, Guo X, Guan J. A thermosensitive hydrogel capable of releasing bFGF for enhanced differentiation of mesenchymal stem cell into cardiomyocyte-like cells under ischemic conditions. Biomacromolecules, 2012, 13(6): 1956-1964.
[87] Tay C Y, Yu H, Pal M, et al. Micropatterned matrix directs differentiation of human mesenchymal stem cells towards myocardial lineage. Exp Cell Res, 2010, 316(7): 1159-1168.
[88] Miskon A, Mahara A, Uyama H, et al. A suspension induction for myocardial differentiation of rat mesenchymal stemcells on various extracellular matrix proteins. Tissue Eng Part C Methods, 2010, 16(5): 979-987.
[89] Wei F, Wang T, Liu J, et al. The subpopulation of mesenchymal stem cells that differentiate toward cardiomyocytes is cardiac progenitor cells. Exp Cell Res, 2011, 317(18): 2661-2670.
[90] Pijnappels D A, Schalij M J, Ramkisoensing A A, et al. Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circ Res, 2008, 103(2): 167-176.
[91] Li Z, Guo X, Guan J. A thermosensitive hydrogel capable of releasing bFGF for enhanced differentiation of mesenchymal stem cell into cardiomyocyte-like cells under ischemic conditions. Biomacromolecules, 2012, 13(6): 1956-1964.
[1] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[2] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[3] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[4] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[5] 陈飞,王晓冰,徐增辉,钱其军. 干细胞改善糖尿病的分子机制及临床研究进展[J]. 中国生物工程杂志, 2020, 40(7): 59-69.
[6] 苑亚坤,刘广洋,刘拥军,谢亚芳,吴昊. 间充质干细胞基础研究与临床转化的中美比较[J]. 中国生物工程杂志, 2020, 40(4): 97-107.
[7] 辜浩,郭鑫宇,堵晶晶,张锫文,王定国,廖坤,张顺华,朱砺. MiR-186-5p对3T3-L1前脂肪细胞增殖分化的影响研究 *[J]. 中国生物工程杂志, 2020, 40(3): 21-30.
[8] 陈利军,屈晶晶,项春生. 间充质干细胞在2019新型冠状病毒肺炎(COVID-19)中的治疗潜能、临床研究与应用前景*[J]. 中国生物工程杂志, 2020, 40(11): 43-55.
[9] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[10] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[11] 朱颖,范梦恬,李具琼,陈彬,张盟浩,吴静红,施琼. 趋化因子受体CX3CR1调控人主动脉瓣膜间质细胞成骨分化的作用研究 *[J]. 中国生物工程杂志, 2019, 39(8): 7-16.
[12] 刘叶,潘玥,郑魏,胡晶. miR-186-5p在酒精诱导的心肌细胞中高表达并通过靶基因XIAP调控细胞凋亡水平 *[J]. 中国生物工程杂志, 2019, 39(5): 53-62.
[13] 程瑜,施琼,安利钦,范梦恬,皇改改,翁亚光. BMP7基因沉默抑制钙盐诱导猪主动脉瓣膜间质细胞成骨分化 *[J]. 中国生物工程杂志, 2019, 39(5): 63-71.
[14] 李欣,赵中利,罗晓彤,曹阳,张立春,于永生,金海国. 诱导多能干细胞向雄性生殖细胞分化诱导物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(4): 94-100.
[15] 施文雯,张蕾. 力学微环境影响间充质干细胞分化的研究现状 *[J]. 中国生物工程杂志, 2018, 38(8): 76-83.