Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (2): 98-103    DOI: 10.13523/j.cb.20140216
综述     
新型靶向基因组编辑技术研究进展
杨发誉, 葛香连, 谷峰
温州医科大学眼视光学院 眼视光学和视觉科学国家重点实验室培育基地 卫生部视觉科学研究重点实验室 温州 325000
Progress of Next-generation Targeted Gene-editing Techniques
YANG Fa-yu, GE Xiang-lian, GU Feng
School of Ophthalmology and Optometry, Wenzhou Medical University, State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou 325000, China
 全文: PDF(571 KB)   HTML
摘要: 传统的靶向基因组编辑技术改造基因效率非常低,严重制约了基础研究和临床应用。因此,新的靶向基因组编辑工具的研究显得非常重要,以此来提高基因原位修复、定点整合及高通量基因敲除的效率。主要论述了近年来发现的新型靶向基因组编辑技术即锌指核酸酶(ZFN)、转录激活子样效应因子核酸酶(TALENs)、规律成簇间隔短回文重复(CRISPR)/Cas系统。从它们的发现、结构和研究进展及应用前景等方面进行了总结;通过比较三者的优缺点,发现规律成簇间隔短回文重复(CRISPRs)具有明显的优点。
关键词: 靶向基因编辑锌指核酸酶(ZFN)转录激活子样效应因子核酸酶(TALENs)规律成簇间隔短回文重复(CRISPRs)    
Abstract: Manipulating genomes by traditional targeted genome editing technique (gene targeting) is inefficient, making it impractical or difficult to use the technique as a gene-therapy approach to cure diseases and decipher gene functions. To overcome this problem, next-generation targeted gene-editing techniques were developed to achieve higher efficiency for gene correction, specific locus integration or knock-in and high throughput gene knock-out. The progress of new techniques for targeted genome-editing tools were reviewed, including zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALENs), and a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system. A brief summary of the history, recent structure, progress, and future prospects was presented. After comparing these tools, it was found that CRISPR systems offer an advantage over ZFN and TALEN.
Key words: Targeted gene editing tool    Zinc Finger nucleases(ZFN)    Transcription activator-like effector nucleases (TALENs)    Clustered regularly interspaced short palindromic repeats(CRISPRs)
收稿日期: 2013-10-18 出版日期: 2014-02-25
ZTFLH:  Q753  
基金资助: 国家科技部“973”计划(2013CB967502)、国家自然科学基金(81201181/H1818)、浙江省卫生厅省部共建项目(201339279)资助项目
通讯作者: 谷峰     E-mail: gufenguw@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨发誉
葛香连
谷峰

引用本文:

杨发誉, 葛香连, 谷峰. 新型靶向基因组编辑技术研究进展[J]. 中国生物工程杂志, 2014, 34(2): 98-103.

YANG Fa-yu, GE Xiang-lian, GU Feng. Progress of Next-generation Targeted Gene-editing Techniques. China Biotechnology, 2014, 34(2): 98-103.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140216        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I2/98

[1] Chamberlain J R, Schwarze U, Russell D W, et al. Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science, 2004, 303(5661): 1198-1201.
[2] Johnson L, Mercer K, Jacks T, et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature, 2001, 410(6832): 1111-1116.
[3] Beard C, Hochedlinger K, Jaenisch R, et al. Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis, 2006, 44(1): 23-28.
[4] Pentao Liu, Nancy A J, Neal G C. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res, 2003, 13(3): 476-484.
[5] Ellis H M, Yu D, Court D L, et al. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci U S A, 2001,98(12):6742-6746.
[6] Miller D G, Wang P R, Russell D W, et al. Gene targeting in vivo by adeno-associated virus vectors. Nat Biotechnol, 2006, 24(8): 1022-1026
[7] Miller J, McLaehlan A D, Klug A, et al. Repetitive zinc binding domains in the protein transcription factor ⅢA from Xenopus oocytes. EMBO J, 1985, 4(6): 1609-1614.
[8] Kim Y G, Chandrasegaran S. Chimeric restriction endonuclease. PNAS, 1994, 91(3): 883-887.
[9] Christine Merlin, Lauren E Beaver, Orley R Taylor, et al. Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases. Genome Research, 2013, 23: 159-168.
[10] Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol, 2010, 48: 419-436.
[11] Bonas U, Stall R E, Staskawicz B, et al. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet,1989, 218(1): 127-136.
[12] Kay S, Hahn S, Marois E, et al. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science, 2007, 318(5850): 648-651
[13] Moscou M J, Bogdanove A J. A simple cipher governs DNA recognition by TAL effectors. Science, 2009, 326(5959): 1501.
[14] Cong L, Zhou R H, Kuo Y C, et al. Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun, 2012, 3(7): 968.
[15] Wang H, Hu Y C, Markoulaki S, et al. TALEN-mediated editing of the mouse Y chromosome. Nat Biotechnol, 2013, 31(6): 530-532.
[16] Lombardo A, Genovese P, Beausejour C M, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol, 2007, 25(11): 1298-1306.
[17] Hockemeyer D, Wang H, Kiani S, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol, 2011, 29(8): 731-734.
[18] Wang H, Hu Y C, Jaenisch R.TALEN-mediated editing of the mouse Y chromosome.Nat Biotechnol, 2013,31(6):530-532.
[19] Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol, 1987, 169 (12): 5429-5433.
[20] Mojica F J, Diez-Villasenor C, Soria E, et al. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, bacteria and mitochondria. Mol Microbiol, 2000, 36(1): 244-246.
[21] Jansen R, Embden J D, Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 2002, 43 (6): 1565-1575.
[22] Grissa I, Vergnaud G, Pourcel C, et al. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 2007, 8: 172.
[23] Karginov F V, Hannon G J. The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol Cell, 2010, 37(1): 7-19.
[24] Deveau H, Garneau J E, Moineau S, et al. CRISPR/Cas system and its role in phage-bacteria interactions. Ann Rev Microbiol, 2010, 64: 475-493.
[25] Marraffini L A, Sontheimer E J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet, 2010, 11(3): 181-190.
[26] Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.
[27] Lei S Q, Matthew H Larson, Luke A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152: 1173-1183.
[28] Ran F A, Hsu P D, Zhang F, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 154(6): 1380-1389.
[29] Fu Y, Foden J A, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR -Cas nucleases in human cells. Nat Biotechnol, 2013, 31(9): 822-826.
[30] Rudolf Jaenisch, Haoyi Wang, Hui Yang, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013, 153: 1-9.
[31] Wu Y, Liang D, Li J, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell, 2013,13(6): 659-662.
[32] Schwank G, Koo B K, Clevers H, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell,2013,13(6): 653-658.
[33] Method of the Year 2011. Nat Methods, 2012, 9(1): 1.
[34] Breakthrough of the year: The runners-up. Science, 2012, 338(6114): 1525-1532.
[35] 张金脉, 任兆瑞. TALENs: 一种新的基因定点修饰技术. 生命科学, 2013, 25(1): 54-59. Jinmai Zhang, Zhaorui Ren. TALENs: A new genome sitespecific modification technology. Chinese Bulletin of Life Sciences, 2013, 25(1): 54-59.
[36] Qiurong Ding, Stephanie N Regan, Yulei Xia, et al. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell, 2013, 12(4): 393-394.
[37] Soldner F, Laganière J, Cheng A W, et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onsetp arkinson point mutations. Cell, 2011, 146(2): 318-331.
[38] Gaj T, Gersbach C A, Barbas C F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013, 31(7): 397-405.
[39] Hsu P D, Scott D A, Zhang F, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol, 2013, 31(9): 827-832.
[40] Shalem O, Sanjana N E, Zhang F, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 2014,343(6166): 84-87.
[1] 王瑞钊, 潘才惠, 王颖, 肖文海, 元英进. 高产β-胡萝卜素酿酒酵母菌株的设计与构建[J]. 中国生物工程杂志, 2016, 36(7): 83-91.
[2] 孙少飞, 汪蓓蕾, 袁婷, 张斌, 张欣, 郭刚, 张瑞. 重组蛋白TAT-NLS-Nkx6.2在大肠杆菌的表达纯化及活性测定[J]. 中国生物工程杂志, 2013, 33(9): 24-30.
[3] 邱沛然, 胡芳, 林瑛, 孟清. 不依赖天然外显子的蛋白质内含子定向进化筛选系统[J]. 中国生物工程杂志, 2013, 33(1): 79-83.