Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (2): 71-77    DOI: 10.13523/j.cb.20140212
技术与方法     
大肠杆菌中从头合成白藜芦醇途径的设计及优化
汪建峰1,2, 张嗣良1, 王勇2
1. 华东理工大学生物反应器工程国家重点实验室 上海 200237;
2. 中国科学院上海生命科学研究院植物生理生态研究所合成生物学重点实验室 上海 200032
Pathway Assembly and Optimization in E. coli for de Novo Biosynthesis of Resveratrol
WANG Jian-feng1,2, ZHANG Si-liang1, WANG Yong2
1. State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China;
2. Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
 全文: PDF(845 KB)   HTML
摘要:

白藜芦醇是一种极具药用价值的植物源芪类化合物。为了在E. coli实现白藜芦醇的从头合成,构建了由酪氨酸解氨酶(TAL),香豆酸-CoA合成酶(4CL)和白藜芦醇合成酶(STS)组成的非天然合成途径。经3天发酵后,白藜芦醇产量仅为2.67 mg/L,而其中间体香豆酸的积累达到了95.64 mg/L。为了进一步改善异源途径的效率,对4CL和STS模块采取融合表达、高拷贝表达及启动子工程改造的策略,最终使白藜芦醇产量提高到了9.6倍,达到了25.76 mg/L,同时香豆酸的积累减少到了20.38 mg/L。这些研究结果为更高效白藜芦醇从头合成工程菌的构建及最终实现白藜芦醇的微生物大规模生产奠定了基础。

关键词: 大肠杆菌白藜芦醇融合表达高拷贝表达启动子工程    
Abstract:

Resveratrol is an important plant stilbene with considerable pharmaceutical values. To achieve the de novo biosynthesis of resveratrol in E. coli, a heterologous resveratrol biosynthetic pathway consisting of tyrosine ammonia lyase (TAL), coumaroyl-CoA synthase (4CL) and stilbene synthase (STS) was constructed. The engineered strain only produced 2.67 mg/L resveratrol after 3 days cultivation. To improve the efficiency of heterologous pathway, the 4CL and STS modules were further engineered using strategies of fusion expression, high-copy expression and promoter engineering. Eventually, the yield of resveratrol reached 25.76 mg/L with a 9.6-fold improvement compared with the initial strain. The useful information for the construction of more efficient recombinant resveratrol producer was provided, and it laid a foundation for the large-scale production of resveratrol through microbial fermentation.

Key words: Escherichia coli    Resveratrol    Fusion expression    High-copy expression    Promoter engineering
收稿日期: 2013-10-15 出版日期: 2014-02-25
ZTFLH:  Q819  
基金资助:

国家“973”计划(2012C13721104)、国家自然科学基金(31170101,31100073)、中国科学院知识创新项目(ICSCXZ-EW-J-12)资助项目

通讯作者: 王勇     E-mail: yongwang@sibs.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
汪建峰
张嗣良
王勇

引用本文:

汪建峰, 张嗣良, 王勇. 大肠杆菌中从头合成白藜芦醇途径的设计及优化[J]. 中国生物工程杂志, 2014, 34(2): 71-77.

WANG Jian-feng, ZHANG Si-liang, WANG Yong. Pathway Assembly and Optimization in E. coli for de Novo Biosynthesis of Resveratrol. China Biotechnology, 2014, 34(2): 71-77.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140212        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I2/71

[1] King R E, Bomser J A, Min D B. Bioactivity of resveratrol. Comprehensive Reviews in Food Science and Food Safety, 2006, 5(3):65-70.
[2] Donnez D, Jeandet P, Clément C, et al. Bioproduction of resveratrol and stilbene derivatives by plant cells and microorganisms. Trends in Biotechnology, 2009, 27(12):706-713.
[3] Xu P, Bhan N, Koffas M A. Engineering plant metabolism into microbes: from systems biology to synthetic biology. Current Opinion in Biotechnology, 2013, 24(2):291-299.
[4] Kirby J, Keasling J D. Metabolic engineering of microorganisms for isoprenoid production. Natural Product Reports, 2008, 25(4):656-661.
[5] Wang Y, Chen S, Yu O. Metabolic engineering of flavonoids in plants and microorganisms. Applied Microbiology and Biotechnology, 2011, 91(4):949-956.
[6] Lim C G, Fowler Z L, Hueller T, et al. High-yield resveratrol oroduction in engineered Escherichia coli. Applied and Environmental Microbiology, 2011, 77(10):3451-3460.
[7] Sydor T, Schaffer S, Boles E. Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium. Applied and Environmental Microbiology, 2010, 76(10):3361-3363.
[8] Shin S Y, Han N S, Park Y C, et al. Production of resveratrol from p-coumaric acid in recombinant Saccharomyces cerevisiae expressing 4-coumarate:coenzyme A ligase and stilbene synthase genes. Enzyme and Microbial Technology, 2011, 48(1):48-53.
[9] Watts K T, Lee PC, Schmidt-Dannert C. Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli. BMC Biotechnology, 2006, 6:22.
[10] Beekwilder J, Wolswinkel R, Jonker H, et al. Production of resveratrol in recombinant microorganisms. Applied and Environmental Microbiology, 2006, 72(8):5670-5672.
[11] Leonard E, Lim K H, Saw PN, et al. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Applied and Environmental Microbiology, 2007, 73(12):3877-3886.
[12] Nijkam PK, Westerhof R G, Ballerstedt H, et al. Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose. Applied Microbiology and Biotechnology, 2007, 74(3):617-624.
[13] Watts K T, Lee P C, Schmidt-Dannert C. Exploring recombinant flavonoid biosynthesis in metabolically engineered Escherichia coli. ChemBioChem, 2004, 5(4):500-507.
[14] Santos C N, Koffas M A, Stephanopoulos G. Optimization of a heterologous pathway for the production of flavonoids from glucose. Metabolic Engineering, 2011, 13(4):392-400.
[15] Wu J, Du G, Zhou J, et al. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metabolic Engineering, 2013 16:48-55.
[16] Wu J, Liu P, Fan Y, et al. Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from l-tyrosine. Journal of Biotechnology, 2013, 167(4):404-411.
[17] Puigbò P, Guzmán E, Romeu A, et al. OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Research, 2007, 35(suppl 2):W126-W131.
[18] Meng H, Wang J, Xiong Z, et al. Quantitative design of regulatory elements based on high-precision strength prediction using artificial neural network. PLoS ONE, 2013,8(4):e60288.
[19] Xue Z, McCluskey M, Cantera K, et al. Identification, characterization and functional expression of a tyrosine ammonia-lyase and its mutants from the photosynthetic bacterium Rhodobacter sphaeroides. Journal of Industrial Microbiology & Biotechnology, 2007, 34(9):599-604.
[20] Kyndt J A, Meyer T E, Cusanovich M A, et al. Characterization of a bacterial tyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein. FEBS Letters, 2002, 512(1-3):240-244.
[21] Vannelli T, Wei Qi W, Sweigard J, et al. Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi. Metabolic Engineering, 2007, 9(2):142-151.
[22] Louie G V, Bowman M E, Moffitt M, et al. Structural determinants and modulation of substrate specificity in phenylalanine-tyrosine ammonia-lyases. Chemistry & Biology, 2006, 13(12):1327-1338.
[23] Zhang Y, Li S Z, Li J, et al. Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and mammalian cells. Journal of the American Chemical Society, 2006, 128(40):13030-13031.
[24] Alper H, Fischer C, Nevoigt E, et al. Tuning genetic control through promoter engineering. Proceedings of the National Academy of Sciences, 2005, 102(36):12678-12683.
[25] Wang Y, Yu O. Synthetic scaffolds increased resveratrol biosynthesis in engineered yeast cells. Journal of Biotechnology, 2012, 157(1):258-260.
[26] Juminaga D, Baidoo E E, Redding-Johanson A M, et al. Modular engineering of L-tyrosine production in Escherichia coli. Applied and Environmental Microbiology, 2012, 78(1):89-98.
[27] Lutke-Eversloh T, Stephanopoulos G. Combinatorial pathway analysis for improved L-tyrosine production in Escherichia coli: identification of enzymatic bottlenecks by systematic gene overexpression. Metabolic Engineering, 2008, 10(2):69-77.
[28] Leonard E, Lim K H, Saw P N, et al. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Applied and Environmental Microbiology, 2007, 73(12):3877-3886.

[1] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[2] 何若昱,林福玉,高向东,刘金毅. 信号肽在大肠杆菌分泌系统中的研究与应用进展[J]. 中国生物工程杂志, 2021, 41(5): 87-93.
[3] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[4] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[5] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[6] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.
[7] 乐易林,傅毓,倪黎,孙建中. 热稳定性丙酮酸:铁氧还蛋白氧化还原酶异源表达及其在乙酰辅酶A合成中的应用 *[J]. 中国生物工程杂志, 2020, 40(3): 72-78.
[8] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[9] 赵程程,孙长坡,常晓娇,伍松陵,林振泉. 大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *[J]. 中国生物工程杂志, 2019, 39(4): 69-77.
[10] 杨飞芸,杨天瑞,刘坤,崔爽,王瑞刚,李国婧. 异源表达CiRS基因拟南芥的黄酮代谢及抑菌能力研究 *[J]. 中国生物工程杂志, 2019, 39(11): 22-30.
[11] 贺雪婷,张敏华,洪解放,马媛媛. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 81-87.
[12] 徐安健, 李艳萌, 李斯文, 乌姗娜, 张蓓, 黄坚. 人组氨酸磷酸酶蛋白PHPT1的细胞定位及其对细胞层状伪足形成的影响[J]. 中国生物工程杂志, 2017, 37(6): 17-21.
[13] 杨飞芸,武燕燕,崔爽,张秀娟,王瑞刚,李国婧. 异源表达CiRS基因通过生成白藜芦醇增强拟南芥的抗氧化能力 *[J]. 中国生物工程杂志, 2017, 37(12): 27-33.
[14] 胡立强, 郑文, 钟艺, 杜丹, 杨浩, 龚萌. 抗病毒蛋白RC28在大肠杆菌和毕赤酵母中的表达及活性比较[J]. 中国生物工程杂志, 2017, 37(1): 14-20.
[15] 张宇萌, 童梅, 陆小冬, 米月, 莫婷, 刘金毅, 姚文兵. 大肠杆菌可溶性表达抗TNF-α Fab的工艺优化[J]. 中国生物工程杂志, 2016, 36(9): 31-37.