Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (2): 59-64    DOI: 10.13523/j.cb.20140210
技术与方法     
技术与方法适体核酶型人工核糖开关的设计
王佳稳1,2, 冯婧娴1,2, 林俊生1,2, 刁勇1,2
1. 华侨大学分子药物研究院 泉州 362021;
2. 华侨大学生物医学学院 泉州 362021
The Artificial Aptazyme Based Riboswitch
WANG Jia-wen1,2, FENG Jing-xian1,2, LIN Jun-sheng1,2, DIAO Yong1,2
1. Institute of Molecular Medicine, Quanzhou 362021 China;
2. School of Biomedical Sciences Huaqiao University, Quanzhou 362021, China
 全文: PDF(750 KB)   HTML
摘要: 适体核酶型核糖开关是近年出现的一种人工基因调控开关。最常见的适体核酶由锤头状核酶和适体组成,结构清晰,易于设计。作为一种顺式作用元件,适体核酶型核糖开关在特异性配体的作用下,无需蛋白质辅助,即可通过调节自身裂解反应,调控mRNA的翻译,可应用于多种细胞的基因调控。目前适体核酶型核糖开关的设计,主要是通过合理组装核酶与适体元件,整合到mRNA后再进行功能筛选。该基因调控开关调节幅度大、响应迅速、调控方式简洁,有可能应用于体内传感器、基因治疗、生物处理器等多个领域。
关键词: 适体模块组装基因调控锤头状核酶    
Abstract: The artificial aptazyme based riboswitch has emerged as a powerful tool for regulating gene expression in recent years. The most common aptazyme consists of a hammerhead ribozyme and an aptamer, it is simply a piece of structured RNA and easy to design. As a cis-acting element, aptazyme riboswitch can recognize specific targets and exert effective influence on translation without the help of protein co-factor through irreversible self-cleavage in vivo, which makes it a versatile platform functions in various cells. The most popular approach to generate an aptazme based riboswitch is to rationally cojoin a ribozyme to an aptamer and screen with a high throughout method after integrated into mRNA. With considerable magnitude of on-off control and rapid induction as well as concise regulation, this riboswitch will have important application in in vivo sensing, gene therapy and biological processor.
Key words: Aptamer    Modular assembly    Gene regulation    Hammerhead ribozyme
收稿日期: 2013-12-03 出版日期: 2014-02-25
ZTFLH:  Q789  
基金资助: 国家自然科学基金(81271691,81371669)、国际科技合作项目(2011DFG33320)、福建省科技重大项目(2013N5007)资助项目
通讯作者: 刁勇     E-mail: diaoyong@hqu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王佳稳
冯婧娴
林俊生
刁勇

引用本文:

王佳稳, 冯婧娴, 林俊生, 刁勇. 技术与方法适体核酶型人工核糖开关的设计[J]. 中国生物工程杂志, 2014, 34(2): 59-64.

WANG Jia-wen, FENG Jing-xian, LIN Jun-sheng, DIAO Yong. The Artificial Aptazyme Based Riboswitch. China Biotechnology, 2014, 34(2): 59-64.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140210        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I2/59

[1] Robertson M P, Ellington A D. In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Nat Biotechnol, 1999, 17(1): 62-66.
[2] Tang J, Breaker R R. Rational design of allosteric ribozymes. Chem Biol, 1997, 4(6): 453-459.
[3] Birikh K R, Heaton P A, Eckstein F. The structure, function and application of the hammerhead ribozyme. Eur J Biochem, 1997, 245(1): 1-16.
[4] Khvorova A, Lescoute A, Westhof E, et al. Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat Struct Biol, 2003, 10(9): 708-712.
[5] Nelson J A, Shepotinovskaya I, Uhlenbeck O C. Hammerheads derived from sTRSV show enhanced cleavage and ligation rate constants. Biochemistry-Us, 2005, 44(44): 14577-14585.
[6] Win M N, Smolke C D. A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc Natl Acad Sci U S A, 2007, 104(36): 14283-14288.
[7] Win M N, Smolke C D. Higher-order cellular information processing with synthetic RNA devices. Science, 2008, 322(5900): 456-460.
[8] Wieland M, Gfell M, Hartig J S. Expanded hammerhead ribozymes containing addressable three-way junctions. Rna, 2009, 15(5): 968-976.
[9] Wieland M, Hartig J S. Improved aptazyme design and in vivo screening enable riboswitching in bacteria. Angew Chem Int Ed Engl, 2008, 47(14): 2604-2607.
[10] Tang J, Breaker R R. Mechanism for allosteric inhibition of an ATP-sensitive ribozyme. Nucleic Acids Res, 1998, 26(18): 4214-4221.
[11] Soukup G A, Breaker R R. Engineering precision RNA molecular switches. Proc Natl Acad Sci U S A, 1999, 96(7): 3584-3589.
[12] Breaker R R. Engineered allosteric ribozymes as biosensor components. Curr Opin Biotechnol, 2002, 13(1): 31-39.
[13] Wieland M, Benz A, Klauser B, et al. Artificial ribozyme switches containing natural riboswitch aptamer domains. Angew Chem Int Ed Engl, 2009, 48(15): 2715-2718.
[14] Ogawa A, Maeda M. An artificial aptazyme-based riboswitch and its cascading system in E. coli. Chembiochem, 2008, 9(2): 206-209.
[15] Werstuck G, Green M R. Controlling gene expression in living cells through small molecule-RNA interactions. Science, 1998, 282(5387): 296-298.
[16] Wei K Y, Chen Y Y, Smolke C D. A yeast-based rapid prototype platform for gene control elements in mammalian cells. Biotechnol Bioeng, 2013, 110(4): 1201-1210.
[17] Chen Y Y, Jensen M C, Smolke C D. Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems. Proc Natl Acad Sci U S A, 2010, 107(19): 8531-8536.
[18] Link K H, Guo L, Ames T D, et al. Engineering high-speed allosteric hammerhead ribozymes. Biol Chem, 2007, 388(8): 779-786.
[19] Liang J C, Chang A L, Kennedy A B, et al. A high-throughput, quantitative cell-based screen for efficient tailoring of RNA device activity. Nucleic Acids Res, 2012, 40(20): e154.
[20] Auslander S, Ketzer P, Hartig J S. A ligand-dependent hammerhead ribozyme switch for controlling mammalian gene expression. Mol Biosyst, 2010, 6(5): 807-814.
[21] Liang J C, Bloom R J, Smolke C D. Engineering biological systems with synthetic RNA molecules. Mol Cell, 2011, 43(6): 915-926.
[22] Nomura Y, Kumar D, Yokobayashi Y. Synthetic mammalian riboswitches based on guanine aptazyme. Chem Commun (Camb), 2012, 48(57): 7215-7217.
[1] 田开仁,薛二淑,宋倩倩,乔建军,李艳妮. CRISPR-dCas9调控基因转录的研究进展 *[J]. 中国生物工程杂志, 2018, 38(7): 94-101.
[2] 邱浩,汪铭书,程安春. γPNA一种新型高效的肽核酸[J]. 中国生物工程杂志, 2018, 38(2): 75-81.
[3] 易喻, 王敏君, 梅建凤, 陈建澍, 张彦璐, 应国清. 细菌内毒素电化学生物传感器的构建及性能表征[J]. 中国生物工程杂志, 2017, 37(8): 46-50.
[4] 董园园, 李海燕, 李校堃, 杨树林. microRNA分子表达与调控研究的最新进展[J]. 中国生物工程杂志, 2011, 31(12): 109-114.
[5] 朱先灿 宋凤斌. 植物菌根共生磷酸盐转运蛋白[J]. 中国生物工程杂志, 2009, 29(12): 108-113.
[6] 陈坚,薛绪潮,方国恩,苏长青,钱其军. RU486诱导调控载体的构建及体外表达[J]. 中国生物工程杂志, 2007, 27(6): 1-5.
[7] 贾彩凤, 李悦, 瞿超. 木本植物体细胞胚胎发生技术[J]. 中国生物工程杂志, 2004, 24(3): 26-29.
[8] 高波, 宋红芹, 陈芹, 李碧春, 孙怀昌, 王克华, 窦套存, 丁铲. 鸡输卵管特异表达载体的构建及其体内表达[J]. 中国生物工程杂志, 2003, 23(8): 83-86.
[9] 綦文涛, 修志龙. 甘油歧化生产1,3-丙二醇过程的代谢和基因调控机理研究进展[J]. 中国生物工程杂志, 2003, 23(2): 64-68.
[10] 陈云弟, 曾溢滔. X染色体失活——一种特殊方式的基因调控[J]. 中国生物工程杂志, 1997, 17(3): 38-42.
[11] 闻伟, 杨胜利. 反义RNA在基因调控中的作用[J]. 中国生物工程杂志, 1990, 10(3): 38-45.
[12] 王智, 李士谔. 癌基因与细胞癌变[J]. 中国生物工程杂志, 1989, 9(2): 20-31.
[13] 蔡良琬. 重复顺序与基因表达[J]. 中国生物工程杂志, 1983, 3(3): 22-30.
[14] E.H.Daridson, R.J.Britten, 何国顺. 重复顺序与真核生物的基因表达[J]. 中国生物工程杂志, 1982, 2(1): 30-34.
[15] 王身立. 转录调控水平上的基因多效性[J]. 中国生物工程杂志, 1981, 1(4): 4-8.