Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (2): 21-25    DOI: 10.13523/j.cb.20140204
研究报告     
NANOGP8基因在肺癌细胞系中甲基化水平与表达研究
王爱娥1, 王英1, 李朝霞1, 宋云熙1, 王东霞1, 甘乐文1, 马建新1, 常艳1, 张睢扬1, 江小霞2
1. 中国人民解放军第二炮兵总医院 北京 100088;
2. 军事医学科学院基础医学研究所 北京 100850
Methylation Regulation of NANOGP8 Expression in Lung Cancer Cell Line
WANG Ai-e1, WANG Ying1, LI Zhao-xia1, SONG Yun-xi1, WANG Dong-xia1, GAN Le-wen1, MA Jian-xin1, CHANG Yan1, ZHANG Sui-yang1, JIANG Xiao-xia2
1. Department of Respiratory, General Hospital of the Secondary Artillery, PLA, Beijing 100088, China;
2. Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100850, China
 全文: PDF(558 KB)   HTML
摘要: 目的:研究NANOGP8基因在肺癌细胞系A549中启动子区域甲基化水平及其与基因表达的相关性。方法:利用MethPrimer甲基化岛预测和甲基化引物设计软件,预测NANOGP8启动子区甲基化位点。分别从人成纤维细胞系和肺癌细胞系中提取基因组DNA,经过亚硫酸氢钠处理后,用针对甲基化位点设计的引物进行PCR扩增,获得相应区段DNA后,连接到pGEM-T载体,转化大肠杆菌鉴定阳性克隆后,测序并与GenBank数据库中NANOGP8基因组DNA 序列比对,获得其甲基化水平数据。分别提取两个细胞系的总RNA,RT-PCR获得相应cDNA 进行PCR扩增,扩增产物经琼脂糖凝胶电泳后,经酶切和测序验证,获取其表达水平数据。结果:成功预测NANOGP8的两个区域有甲基化位点,并检测到人成纤维细胞系和肺癌A549细胞系中NANOGP8启动子甲基化水平分别为59.7%和12.5%,表达检测结果显示在A549细胞系中检测到NANOGP8的基因片段,而在人成纤维细胞系中没有扩增到相应产物。结论:在正常成体细胞中NANOGP8基因由于启动子的高度甲基化而沉默,而在肺癌细胞系中NANOGP8基因启动子去甲基化激活其表达。NANOGP8基因的表达与其启动子区域去甲基化密切相关,同时NANOGP8在肺癌细胞分化过程中发挥重要作用。
关键词: NANOGP8肺癌细胞系A549甲基化调控表达    
Abstract: The nearly identified retrogene NANOGP8 is from a stem cell transcription factor NANOG gene, which expressed in multiple cancers, but generally not in normal tissues and its function is related to cancer development and progression. To investigate the relationship between NANOGP8 expression level and methylation sites at the gene promoters.Bisulphate Sequencing in lung cancer cell line A549 as well as the normal fibroblast cells were performed. Genomic DNA was extracted from these cells and treated with bisulphate, then PCR was performed in the NANOG promoter, encompassing a total of 10 CpGs within nucleotides -1449 to -1295 and -1168 to -952 relative to the transcription start site (TSS) reported by Park. Two regions including 9 CpGs in the potential NANOGP8 promoter, which located within nucleotides -1529 to -1401 and -690 to -587 relative to the TSS of NANOGP8 predicted by Methprimer program were also examined. PCR products were then ligated to pGEM-T vector. The recombinant plasmid was transformed into E.coli DH5α and eight clones for each region were sequenced and blasted. There are no significant changes of the percentage of clones with methylation in NANOG promoter in A549 cell line compared to in the fibroblast cells (65% vs. 67.5%, P=0.62). However, the percentage at the two regions of NANOGP8 shows a significant increase from A549 cell line to the fibroblast cells (12.5% vs.59.7%, P<0.001). NANOGP8 transcriptional level was detected by RT-PCR in both cell lines and found NANOGP8 is highly expressed in A549 cell line but not in the fibroblast cells. The methylation status of 5'-flanking regions of human NANOGP8 is associated with the NANOGP8 expression in lung cell line and may relate to lung cancer development and progression.
Key words: NANOGP8    A549 cell line    Methylation    Regulation    Expression
收稿日期: 2013-11-20 出版日期: 2014-02-25
ZTFLH:  Q786  
通讯作者: 王英     E-mail: 13641083406@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王爱娥
王英
李朝霞
宋云熙
王东霞
甘乐文
马建新
常艳
张睢扬
江小霞

引用本文:

王爱娥, 王英, 李朝霞, 宋云熙, 王东霞, 甘乐文, 马建新, 常艳, 张睢扬, 江小霞. NANOGP8基因在肺癌细胞系中甲基化水平与表达研究[J]. 中国生物工程杂志, 2014, 34(2): 21-25.

WANG Ai-e, WANG Ying, LI Zhao-xia, SONG Yun-xi, WANG Dong-xia, GAN Le-wen, MA Jian-xin, CHANG Yan, ZHANG Sui-yang, JIANG Xiao-xia. Methylation Regulation of NANOGP8 Expression in Lung Cancer Cell Line. China Biotechnology, 2014, 34(2): 21-25.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140204        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I2/21

[1] Soon Y Y, Stockler M R, Askie L M, et al. Duration of chemotherapy for advanced non small cell lung cancer: a systematic review and meta analysis of randomized trials. J Clin Oncol, 2009, 27(20): 3277-3283.
[2] 宋东颖,王毅,孙岚,等. 肿瘤干细胞理论及肿瘤干细胞分离和鉴定研究进展. 中国药理学与毒理学杂志, 2012, 26(5): 674-679. Song D Y,Wang Y,Sun L,et al. Progress in tumor-stem cell theory and tumor stem cells isolation and identification. Chin J Pharmacol Toxicol,2012, 26(5): 674-679.
[3] 冯缤,冯起校. 肿瘤学说对肺癌研究的价值. 职业与健康,2012, 28(5): 613-614. Feng B,Feng Q X. Value of cancer stem cell theory in lung cancer related studies. Occu Pand Health,2012, 28(5): 613-614.
[4] Park I H, Zhao R, West J A, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 2008, 451(7175): 141-146.
[5] Miyoshi N, Ishii H, Nagai K, et al. Defined factors induce programming of gastrointestinal cancer cells. Proc Natl Acad Sci USA, 2010, 107: 40-45.
[6] Jeter C R, Badeaux M, Choy G, et al. Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem W Cells, 2009, 27: 993-1005.
[7] Luo W, Li S, Peng B, et al. Embryonic stem cells markers SOX2, OCT4 and Nanog expression and their correlations with epithelial-mesenchymal transition in nasopharyngeal carcinoma. PLoS One, 2013, 8(2): 1-8.
[8] Lee M T, Bonneau A R, Takacs C M, et al. Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature, 2013, 503(7476): 360-364.
[9] Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 2003, 113: 631-642.
[10] Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 2003, 113: 643-655.
[11] Costa Y, Ding J, Theunissen T W, et al. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature, 2013, 495(7441): 370-374.
[12] Booth H A, Holland P W. Eleven daughters of Nanog. Genomics, 2004, 84: 229-238.
[13] Zhang J, Wang X, Li M, et al. NANOGP8 is a retrogene expressed in cancers. FEBS J, 2006, 273(8): 1723-1730.
[14] Palla A R, Piazzolla D, Abad M, et al. Reprogramming activity of NANOGP8, a NANOG family member widely expressed in cancer. Oncogene, 2013, 32(8): 1723-1730.
[15] Ishiguro T, Sato A, Ohata H, et al. Differential expression of nanog1 and nanogp8 in colon cancer cells. Biochem Biophys Res Commun, 2012, 418(2): 199-204.
[16] Jeter C R, Liu B, Liu X, et al. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene, 2011, 30(9): 3833-3845.
[17] Zhang J, Espinoza L A, Kinders R J, et al. NANOG modulates stemness in human colorectal cancer. Oncogene, 2013, 32(37): 4397-405.
[18] Liu Y, Wu X, Li X, et al. Blocking mtDNA replication upregulates the expression of stemness-related genes in prostate cancer cell lines. Ultrastruct Pathol, 2013, 37(4): 258-266.
[19] Herman J G, Graff J R, Myohanen S, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A, 1996, 93 (18): 9821-9826.
[20] 张经余,王爱娥,李美香,等. 人NANOGP8蛋白的原核表达及多克隆抗体的制备.中国生物工程杂志, 2009, 29(3): 30-35. Zhang J Y, Wang A E, Li M X, et al. Prokaryotic expression and preparation of polyclonal antibody of human NANOGP8. China Biotechnology, 2009, 29(3): 30-35.
[1] 贺立恒,张毅,张洁,任豫超,解红娥,唐锐敏,贾小云,武宗信. 基于转录组和WGCNA的甘薯花青素合成相关基因共表达网络的构建及核心基因的挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 27-36.
[2] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[3] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[4] 颜愈佳,邹玲. piRNA生物学起源及功能研究进展[J]. 中国生物工程杂志, 2021, 41(5): 45-50.
[5] 张磊,唐永凯,李红霞,李建林,徐逾鑫,李迎宾,俞菊华. 促进原核表达蛋白可溶性的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 138-149.
[6] 刘美琴,高博,焦月盈,李玮,虞结梅,彭向雷,郑妍鹏,付远辉,何金生. 人呼吸道合胞病毒感染的A549细胞中长链非编码RNA表达谱研究[J]. 中国生物工程杂志, 2021, 41(2/3): 7-13.
[7] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[8] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[9] 卜恺璇,周翠霞,路福平,朱传合. 细菌转录起始调控机制*[J]. 中国生物工程杂志, 2021, 41(11): 89-99.
[10] 杨茜,栾雨时. sly-miR399在番茄抗晚疫病中的初步探究*[J]. 中国生物工程杂志, 2021, 41(11): 23-31.
[11] 陈素芳,夏明印,曾丽艳,安晓琴,田敏芳,彭建. 抗菌肽Cec4a的重组表达和抗菌活性研究*[J]. 中国生物工程杂志, 2021, 41(10): 12-18.
[12] 王光路, 王梦园, 周忆菲, 马科, 张帆, 杨雪鹏. 吡咯喹啉醌生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 103-113.
[13] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[14] 宇光海, 彭海芬, 王翱宇. 阿维拉霉素生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 94-102.
[15] 刘啸尘, 范代娣, 杨帆, 武占省. 人参皂苷化合物生物合成进展 *[J]. 中国生物工程杂志, 2021, 41(1): 80-93.