Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (1): 95-100    DOI: 10.13523/j.cb.20140115
综述     
哺乳动物细胞表达系统研究进展
李国坤1, 高向东1, 徐晨2
1. 中国药科大学生命科学与技术学院 南京 210009;
2. 北京三元基因工程有限公司 北京 102600
Advances on Mammalian Cell Expression System
LI Guo-kun1, GAO Xiang-dong1, XU Chen2
1. School of Science & Technology, China Pharmaceutical University, Nanjing 210009, China;
2. Beijing Tri-prime Genetic Engineering Co. Ltd., Beijing 102600, China
 全文: PDF(446 KB)   HTML
摘要: 目前,哺乳动物细胞已成为生产多种生物药物的首选宿主细胞。哺乳动物细胞表达系统可进行翻译后修饰,表达的重组蛋白接近人源构象,因此被大量用于治疗性重组蛋白的生产,如何建立高效的哺乳动物细胞表达系统也受到研究者们的重视。随着基因组学、转录组学、蛋白质组学以及代谢组学研究不断深入,近几年来在优化哺乳动物表达系统方面取得了长足的进步。从高效表达载体构建、宿主细胞改造、高通量筛选、培养基优化等方面阐述哺乳动物细胞表达系统的研究进展,以期为研究者们提供一定的帮助。
关键词: 高效表达载体染色质开放元件宿主细胞改造高通量筛选培养基优化    
Abstract: Mammalian cells have become the preferred host cells for the manufacture of a wide range of biopharmaceuticals. Recombination proteins expressed by mammalian cell expression system approximate human forms due to post translation modification, and mammalian cell expression system is used widely to manufacture therapeutic recombinant proteins. The establishment of efficient expression system was paid close attention to by more researchers. Along with the development of genomics, transcriptomics, proteomics and metabolomics, great progress has been made in optimization of a mammalian expression system in recent years. Development of mammalian cell expression system through the construction of efficient expression vector, host cell transformation, high-throughput screening, and medium optimization were introduced.
Key words: High-efficiency expression vector    UCOE    Host cell engineering    High-throughput screening    Medium optimization
收稿日期: 2013-11-06 出版日期: 2014-01-25
ZTFLH:  Q952  
通讯作者: 徐晨,E-mail:xuchen@triprime.com     E-mail: xuchen@triprime.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李国坤
高向东
徐晨

引用本文:

李国坤, 高向东, 徐晨. 哺乳动物细胞表达系统研究进展[J]. 中国生物工程杂志, 2014, 34(1): 95-100.

LI Guo-kun, GAO Xiang-dong, XU Chen. Advances on Mammalian Cell Expression System. China Biotechnology, 2014, 34(1): 95-100.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140115        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I1/95

[1] Mullard A. 2012 FDA drug approvals. Nat Rev Drug Discov, 2013, 12(2): 87-90.
[2] Mullard A. 2011 FDA drug approvals. Nat Rev Drug Discov, 2012, 11(2): 91-94.
[3] Soudabeh A S, Yakhchali B, Minuchehr Z, et al. Expression enhancement in trastuzumab therapeutic monoclonal antibody production using genomic amplification with methotrexate. Avicenna J Med Biotechnol, 2013, 5(2): 87-95.
[4] Lee K H, Onitsuka M, Honda K, et al. Rapid construction of transgene-amplified CHO cell lines by cell cycle checkpoint engineering. Applied microbiology and biotechnology, 2013, 97(13): 5731-5741.
[5] Fan L, Kadura I, Krebs L E, et al. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells. Biotechnol Bioeng, 2012, 109(4): 1007-1015.
[6] Bailey L A, Hatton D, Field R, et al. Determination of Chinese hamster ovary cell line stability and recombinant antibody expression during long-term culture. Biotechnol Bioeng, 2012, 109(8): 2093-2103.
[7] Ley D, Harraghy N, Le Fourn V, et al. MAR elements and transposons for improved transgene integration and expression. PLoS ONE, 2013, 8(4): e62784.
[8] Antoniou M, Harland L, Mustoe T, et al. Transgenes encompassing dual-promoter CpG islands from the human TBP and HNRPA2B1 loci are resistant to heterochromatin-mediated silencing. Genomics, 2003, 82(3): 269-279.
[9] Dharshanan S, Chong H, Cheah S H, et al. Stable expression of H1C2 monoclonal antibody in NS0 and CHO cells using pFUSE and UCOE expression system. Cytotechnology, 2013, July.
[10] Boscolo S, Mion F, Licciulli M, et al. Simple scale-up of recombinant antibody production using an UCOE containing vector. N Biotechnol, 2012, 29(4): 477-484.
[11] Nair A R, Jinger X, Hermiston T W. Effect of different UCOE-promoter combinations in creation of engineered cell lines for the production of Factor VⅢ. BMC Res Notes, 2011, 4:178.
[12] Zhou H, Liu Z G, Sun Z W, et al. Generation of stable cell lines by site-specific integration of transgenes into engineered Chinese hamster ovary strains using an FLP-FRT system. Journal of biotechnology, 2010, 147(2): 122-129.
[13] Cacciatore J J, Leonard E F, Chasin L A. The isolation of CHO cells with a site conferring a high and reproducible transgene amplification rate. Journal of biotechnology, 2012, 164(2): 346-353.
[14] Cacciatore J J, Chasin L A, Leonard E F. Gene amplification and vector engineering to achieve rapid and high-level therapeutic protein production using the Dhfr-based CHO cell selection system. Biotechnol Adv, 2010, 28(6): 673-681.
[15] Sautter K, Enenkel B. Selection of high-producing CHO cells using NPT selection marker with reduced enzyme activity. Biotechnol Bioeng, 2005, 89(5): 530-538.
[16] Noguchi C, Araki Y, Miki D, et al. Fusion of the Dhfr/Mtx and IR/MAR gene amplification methods produces a rapid and efficient method for stable recombinant protein production. PLoS ONE, 2012, 7(12): e52990.
[17] Ng S K, Tan T R, Wang Y, et al. Production of functional soluble Dectin-1 glycoprotein using an IRES-linked destabilized-dihydrofolate reductase expression vector. PLoS ONE, 2012, 7(12): e52785.
[18] Westwood A D, Rowe D A, Clarke H R. Improved recombinant protein yield using a codon deoptimized DHFR selectable marker in a CHEF1 expression plasmid. Biotechnol Prog, 2010, 26(6): 1558-1566.
[19] Ng S K, Wang D I, Yap M G. Application of destabilizing sequences on selection marker for improved recombinant protein productivity in CHO-DG44. Metab Eng, 2007, 9(3): 304-316.
[20] Underhill M F, Smales C M, Naylor L H, et al. Transient gene expression levels from multigene expression vectors. Biotechnol Prog, 2007, 23(2): 435-443.
[21] Ho S C, Bardor M, Feng H, et al. IRES-mediated Tricistronic vectors for enhancing generation of high monoclonal antibody expressing CHO cell lines. Journal of Biotechnology, 2012, 157(1): 130-139.
[22] Ho S C, Koh E Y, Van Beers M, et al. Control of IgG LC:HC ratio in stably transfected CHO cells and study of the impact on expression, aggregation, glycosylation and conformational stability. Journal of Biotechnology, 2013, 165(3-4): 157-166.
[23] Doronina V A, Wu C, De Felipe P, et al. Site-specific release of nascent chains from ribosomes at a sense codon. Mol Cell Biol, 2008, 28(13): 4227-4239.
[24] Ho S C, Bardor M, Li B, et al. Comparison of internal ribosome entry site (IRES) and Furin-2A (F2A) for monoclonal antibody expression level and quality in CHO cells. PLoS ONE, 2013, 8(5): e63247.
[25] Lee J S, Ha T K, Park J H, et al. Anti-cell death engineering of CHO cells: co-overexpression of Bcl-2 for apoptosis inhibition, Beclin-1 for autophagy induction. Biotechnol Bioeng, 2013, 110(8): 2195-2207.
[26] Kim Y G, Kim J Y, Mohan C, et al. Effect of Bcl-xL overexpression on apoptosis and autophagy in recombinant Chinese hamster ovary cells under nutrient-deprived condition. Biotechnol Bioeng, 2009, 103(4): 757-766.
[27] Wang Z, Ma X, Zhao L, et al. Expression of anti-apoptotic 30Kc6 gene inhibiting hyperosmotic pressure-induced apoptosis in antibody-producing Chinese hamster ovary cells. Process Biochemistry, 2012, 47(5): 735-741.
[28] Zhou M, Crawford Y, Ng D, et al. Decreasing lactate level and increasing antibody production in Chinese Hamster Ovary cells (CHO) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases. Journal of Biotechnology, 2011, 153(1-2): 27-34.
[29] Sunley K, Butler M. Strategies for the enhancement of recombinant protein production from mammalian cells by growth arrest. Biotechnol Adv, 2010, 28(3): 385-394.
[30] Rita Costa A, Elisa Rodrigues M, Henriques M, et al. Guidelines to cell engineering for monoclonal antibody production. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV, 2010, 74(2): 127-138.
[31] Park J H, Wang Z, Jeong H J, et al. Enhancement of recombinant human EPO production and glycosylation in serum-free suspension culture of CHO cells through expression and supplementation of 30Kc19. Applied Microbiology and Biotechnology, 2012, 96(3): 671-683.
[32] Kumar N, Borth N. Flow-cytometry and cell sorting: an efficient approach to investigate productivity and cell physiology in mammalian cell factories. Methods, 2012, 56(3): 366-374.
[33] Fitzgerald W, Grivel J C. A universal nanoparticle cell secretion capture assay. Cytometry A, 2013, 83(2): 205-211.
[34] Song M, Raphaelli K, Jones M L, et al. Clonal selection of high producing, stably transfected HEK293 cell lines utilizing modified, high-throughput FACS screening. Journal of Chemical Technology & Biotechnology, 2011, 86(7): 935-941.
[35] Caron A W, Nicolas C, Gaillet B, et al. Fluorescent labeling in semi-solid medium for selection of mammalian cells secreting high-levels of recombinant proteins. BMC Biotechnol, 2009, 9:42.
[36] Zhang H, Wang H, Liu M, et al. Rational development of a serum-free medium and fed-batch process for a GS-CHO cell line expressing recombinant antibody. Cytotechnology, 2013, 65(3): 363-378.
[37] Van Der Valk J, Brunner D, De Smet K, et al. Optimization of chemically defined cell culture media——replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro, 2010, 24(4): 1053-1063.
No related articles found!