Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (1): 9-14    DOI: 10.13523/j.cb.20140102
研究报告     
重组狂犬病病毒糖蛋白活酵母疫苗经小鼠口服给药后的免疫效果
赵慧1, 郑文岭2, 彭翼飞2, 马文丽2
1. 华南农业大学资源环境学院 广州 510640;
2. 南方医科大学基因工程研究所 广州 510515
Protection Effect of Recombinant Oral Rabies Vaccine for Human Use on Immunity of Mice
ZHAO Hui1, ZHENG Wen-ling2, PENG Yi-fei2, MA Wen-li2
1. College of Nature Resources and Environment, South China Agricultural University, Guangzhou 510640, China;
2. Institute of Gene Engineer, Southern Medical University, Guangzhou 510515, China
 全文: PDF(656 KB)   HTML
摘要: 目的:研究以活酵母为输送载体的狂犬病疫苗对小鼠的免疫保护能力和免疫疗程。方法:小鼠首先灌食高浓度空白活酵母INVSI,并于灌胃后8h和12h分别采集小鼠空肠和回肠组织并提取小肠浸出液培养,计算活酵母经肠胃环境后的存活率;分别取狂犬病糖蛋白(glycoprotein,G)分泌型表达菌株pYes-InG和胞内表达型菌株pYes-G灌胃小鼠,灌胃结束后12h采集小鼠血清和小肠组织,采用免疫组织化学方法检测抗原物质G在小肠上皮细胞的分布,采用ELISA检测小鼠血清中和性抗体的滴度。结果:活酵母经灌食消化8h后在小肠中的存活率最高达36.11%,12h后降至0.59%;口服分泌型pYes-InG重组酵母的小鼠小肠组织和血清中能检测到抗原物质G和低量的中和性抗体,ELISA分析显示,小鼠经过3~4次免疫接种,免疫效果基本恒定,而口服胞内表达型pYes-G重组酵母的小鼠小肠组织和血清中均未检测到目标物。结论:分泌型重组酵母pYes-InG经多次口服可对狂犬病起到一定的预防作用,但它诱导产生的中和性抗体浓度低,免疫应答慢,虽不适合用于控制突发性狂犬病的传染以及治疗狂犬病患者,但从免疫机制、免疫方式、安全性以及生产成本等因素考虑,仍具有良好的研究价值。
关键词: 人用狂犬病疫苗药物输送载体口服    
Abstract: Purpose To evaluation of the immune protection effect of a oral rabies vaccine and on the immune program in mice for potential human use delivered by live recombinant Saccharomyces cerevisiae. Methods Two groups of Kunming mice (each containing ten mice) were fed by oral gavage with high density live cells of Saccharomyces cerevisiae (S. cerevisiae) INVSCI. At 8 and 12 hours after being fed, the jejunum and ileum of the mice were collected and extracted, respectively, and then those extracts was cultured for 2~3 days at 30℃ for calculation of the survival rates of yeast cells passed through digestive tract. Then the other two groups were fed with two kinds of recombinant yeast expressing rabies virus glycoprotein (G) in different forms including secretory expression pYes-InG and intracellular expression pYes-G. Blood serum and intestine in mice were isolated at 12 hours of fed time. Antibodies against rabies virus in their sera were analyzed by ELISA and the distribution of G antigen in intestinal slices was measured by immunohistochemistry methods. Results The survival rate reached the greatest value of about 36.11%(n=10) at 8 hours after being fed with empty yeast cells and the survival rate after 12 hours was about 0.59% (n=12). The G antigen and low neutralizing antibody titer were detected in tissue samples from the mice fed with yeast cells of secretory expression pYes-InG. The concentration of neutralizing antibody was maintained constant after oral gavage three to four times. However, no antigen or antibody was found in tissue samples from the mice fed with yeast cells of pYes-G. Conclusions Although the new kind of recombinant S.cerevisiae vaccine secreting G antigen (pYes-InG) was unsuitable for preventing infection of rabies virus and treating those patients exposed to rabies virus due to the slow immune response and low antibody titer, they showed potential application for human use considering their immune effect, immune mechanism of oral vaccine, the low production costs and the occupational safety regulations.
Key words: Rabies vaccine for human use    Drug delivery vector    Oral administration
收稿日期: 2013-10-15 出版日期: 2014-01-25
ZTFLH:  Q352  
通讯作者: 郑文岭,E-mail:wenling@fimmu.com;马文丽,E-mail:wenli668@gmail.com     E-mail: wenling@fimmu.com;wenli668@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵慧
郑文岭
彭翼飞
马文丽

引用本文:

赵慧, 郑文岭, 彭翼飞, 马文丽. 重组狂犬病病毒糖蛋白活酵母疫苗经小鼠口服给药后的免疫效果[J]. 中国生物工程杂志, 2014, 34(1): 9-14.

ZHAO Hui, ZHENG Wen-ling, PENG Yi-fei, MA Wen-li. Protection Effect of Recombinant Oral Rabies Vaccine for Human Use on Immunity of Mice. China Biotechnology, 2014, 34(1): 9-14.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140102        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I1/9

[1] Kim S H, Lee K Y, Jang Y S. Mucosal immune system and M cell-targeting strategies for oral mucosal vaccination. Immune Netw, 2012, 12(5):165-175.
[2] Mutsch M, Zhou W, Phodes P, et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell's palsy in Switzerland. N Engl J Med, 2004, 350(9):896-903.
[3] Czerkinsky C, Holmgren J. Enteric vaccines for the developing world: a challenge for mucosal mmunology. Mucosal Immunol, 2009, 2(4): 284-287.
[4] Mestecky J, Nguyen H, Czerkinsky C, et al. Oral immunization: an update. Curr Opin Gastroenterol, 2008, 24(6): 713-719.
[5] Azizi A, Kumar A, Diaz-Mitoma F, et al. Enhancing oral vaccine potency by targeting intestinal M cells. PloS Pathog, 2010, 6(11): e1001147-7.
[6] Katz D E, DeLorimier A J, Wolf M K, et al. Oral immunization of adult volunteers with microencapsulated enterotoxigenic Escherichia coli (ETEC) CS6 antigen. Vaccine, 2003, 21(5-6): 341-346.
[7] Frey A, Giannasca K T, Weltzin R, et al. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med, 1996, 184 (3): 1045-1059.
[8] Tacket C O. Plant-based oral vaccines: results of human trials. Curr Top Mircobiol Immunol, 2009, 332: 103-117.
[9] Pniewski T, Kapusta J, Bociag P, et al. Plant expression, lyophilisation and storage of HBV medium and large surface antigens for a prototype oral vaccine formulation. Plant Cell Rep, 2012, 31(3): 585-595.
[10] Steidler L, Hans W, Schotte L, et al. Treatment of murine colitis by Lactococcus lactis secreting Interleukin-10. Science.2000, 289: 1352-1355.
[11] Chatel J M. Pothelune L, Ah-Leung S, et al. In vivo transfer plasmid from food-grade transiting lactococci to murine epithelial cells. Gene Ther, 2008, 15(16):1184-1190.
[12] Bermúdez-Humarán L G, Kharrat P, Chatel J M, et al. Lactococci and lactoacili as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microbial Cell Factories, 2011, 10(suppl 1): S4.
[13] Liu M A. Immunologic basis of vaccine vectors. Immunity, 2010, 33(4): 504-515.
[14] 赵慧, 郑文岭, 高洋, 等. 狂犬病病毒糖蛋白在酿酒酵母中的表达.微生物学通报, 2009, 36(11): 1705 -1709. Zhao H, Zheng W L, Gao Y, et al. Expression of rabies virus glycoprotein gene in Saccharomyces cerevisiae. Microbiology, 2009, 36(11):1705-1709.
[15] 孙敬方主编. 动物实验方法学. 北京:人民卫生出版社, 2002:47-48. SUN J F. Animal Experiment Methodology.Beijing:Peoples Health Publishing House, 2002:47-48.
[16] Steidler L, Hans W, Schotte L, et al. Treatment of murine colitis by Lactococcus lactis secreting Interleukin-10. Science, 2000, 289(5483): 1352-1355.
[17] Drouault S, Corthier G, Ehrlich SD, et al. Survival, physiology, and lysis of Lactococcus lactis in the digestive tract. Appl Environ Microbiol, 1999, 65(11): 4881-4886.
[18] Schreuder MP, Deen C, Boersma WJ, et al. Yeast expressing hepatitis B virus surface antigen determinants on its surface: implications for a possible oral vaccine. Vaccine, 1996, 14(5): 383 -388
[19] Blanquet S, Antonelli R, Laforet L, et al. Living recombinant Saccharomyces cerevisiae secreting proteins or peptides as a new drug delivery system in the gut. J Biotechnol, 2004, 110(1):37-49
[20] Müller, G. Oral delivery of protein drugs: driver for personalized medicine? Curr Issues Mol Biol, 2011, 13(1): 13-24.
[21] Kuolee R, Chen W. M cell-targeted delivery of vaccines and therapeutics. Expert Opin Drug Deliv, 2008, 5(6): 693-702.
[1] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[2] 潘晓倩,熊向源,龚妍春,李资玲,李玉萍. 口服抗癌药物纳米载体的研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 65-73.
[3] 刘地, 晏婷, 何秀娟, 郑文云, 马兴元. 细菌性腹泻三联口服疫苗的研制及其免疫效果的初步评价[J]. 中国生物工程杂志, 2017, 37(7): 18-26.
[4] 谢雯琦, 马三梅, 王永飞, 孙小武. 转基因番茄口服疫苗的现状,问题及对策[J]. 中国生物工程杂志, 2014, 34(10): 94-100.
[5] 刘斌, 赵丽华, 李彬, 余晓菲, 冯义, 卢士红, 韩忠朝. 减毒沙门氏菌介导的血小板第四因子活性片段的放射保护作用研究[J]. 中国生物工程杂志, 2005, 25(3): 23-25,27-28.
[6] 张娅, 曾君祉, 周志勇, 陈毓荃, 黄华樑. 植物性口服疫苗研究进展[J]. 中国生物工程杂志, 2004, 24(9): 12-15.
[7] 耿德贵, 王义琴, 李文彬, 孙勇如. 利用转基因植物生产口服疫苗的研究现状[J]. 中国生物工程杂志, 2002, 22(1): 19-21,14.
[8] 张德礼. 狂犬病细胞培养疫苗近况与重组活载体疫苗研究进展述评[J]. 中国生物工程杂志, 1992, 12(4): 45-49.
[9] 张德礼. 狂犬病细胞培养疫苗近况与重组活载体疫苗研究进展述评[J]. 中国生物工程杂志, 1992, 12(3): 45-49.
[10] 石贵贤. 口服霍乱活疫苗的创制[J]. 中国生物工程杂志, 1984, 4(3): 112-113.