Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (8): 63-73    DOI: 10.13523/j.cb.2005005
综述     
高通量灌流培养模型在生物工艺开发中的应用研究
靳露1,周航2,*,曹云2,王振守2,曹荣月1,*()
1 中国药科大学生命科学与技术学院 南京 211198
2 上海药明生物技术有限公司 上海 200131
Research on Applications of High-Throughput Perfusion Models in Bioprocessing Development
JIN Lu1,ZHOU Hang2,*,CAO Yun2,WANG Zhou-shou2,CAO Rong-yue1,*()
1 College of Life Science and Biotechnology,China Pharmaceutical University,Nanjing 211198,China
2 Cell Culture Process Development,Wuxi Biologics,Shanghai 200131,China
 全文: PDF(1648 KB)   HTML
摘要:

近年来,连续型细胞培养由于其高单位体积产量、稳定的产品质量属性以及潜在的成本节约效应正成为生物大分子制药生产的工艺焦点。相比传统的流加培养模式,灌流培养因培养的连续性、操作的复杂性,致使其反应器规模培养需消耗大量培养基,产生更高人力成本,不能满足当今加速化高效化的工艺开发需求。为获得稳健的灌流培养工艺并控制较低成本,高通量灌流培养模型被用于批量化的小规模灌流培养,进行灌流培养前期的克隆筛选、培养基筛选及工艺参数优化等工作,为后期大规模培养提供实用性数据支持,同时也被用于预测大规模培养的细胞表型和产品质量属性。重点介绍了当前高通量系统包括摇瓶/摇管系统、多平行自动化系统以及微流控体系用作灌流培养的特征、具体应用及比较,同时论述当前高通量灌流培养系统在生物工艺领域发展所面临的机遇及挑战,并展望其应用前景。

关键词: 灌流培养高通量微型生物反应器Ambr微流控    
Abstract:

Recently, continuous cell culture is becoming the process focus in the pharmaceutical industry due to its high volumetric productivity, stable product quality attributes, and cost- effectiveness. Compared to the traditional fed-batch culture, benchtop-scale perfusion culture requires quantities of media and labor costs due to its longer culture duration and operation complexity, thus failing to satisfy the current requirement of accelerated and efficient process development. To obtain a robust perfusion process with reduced costs, high-throughput perfusion models are utilized for batches of small-scale perfusion culture in the early-stage process development including clone screening, media selection and process parameter optimization, providing practical process data for late-stage large-scale bioprocessing. Furthermore, they are also applied to predict the phenotype and product quality attributes in large-scale culture. This article will focus on the characteristics, applications and comparisons of current high-throughput systems including shake flasks and spin tubes, parallelized automated ambr systems and microfluidic systems, and discuss the opportunities and challenges faced with high-throughput perfusion models in the bioprocessing development, then look forward to the future prospects.

Key words: Perfusion    High-throughput    Micro-bioreactor    Ambr    Microfluidics
收稿日期: 2020-05-06 出版日期: 2020-09-10
ZTFLH:  Q819  
通讯作者: 周航,曹荣月     E-mail: caorongyuenanjing@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
靳露
周航
曹云
王振守
曹荣月

引用本文:

靳露,周航,曹云,王振守,曹荣月. 高通量灌流培养模型在生物工艺开发中的应用研究[J]. 中国生物工程杂志, 2020, 40(8): 63-73.

JIN Lu,ZHOU Hang,CAO Yun,WANG Zhou-shou,CAO Rong-yue. Research on Applications of High-Throughput Perfusion Models in Bioprocessing Development. China Biotechnology, 2020, 40(8): 63-73.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2005005        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I8/63

图1  反应器灌流培养装置图
图2  摇管灌流操作流程[28]
图3  Ambr? 15工作站构造①(①图片来源:www.sartorius.com.cn)
图4  Ambr? 250灌流培养系统构造①(①图片来源:www.sartorius.com.cn)
图5  微流控技术在细胞培养工艺中的应用示例
培养系统 摇瓶/摇管系统(摇管) 多平行自动化培养系统(Ambr?15系统) 微流控体系
特征 工作体积在5 ~ 25 ml,通过人工的离心换液实现细胞截留与换液 工作体积在8 ~ 15 ml,多平行自动化操作,通过细胞液自然沉降及机械臂吸取上清实现细胞截留与换液 工作体积为pl到ml,通过芯片/沉降及培养液连续流入/流出实现细胞截留与换液
优点 成本低廉、操作简便 有pH、DO实时监控,氧传质更好,可培养细胞密度更高,与反应器培养一致性提高 一体化控制,提高操作通量及重现性,节约操作空间及试剂消耗量
缺点 缺乏pH、DO控制;物理构造不一致;半连续细胞液交换 无微泡管路,氧传质的限制影响VCDmax;可能出现细胞代谢及产量的不一致 微流控灌流工艺开发案例应用较少;系统制造及过程监控技术需不断升级
发展方向 用于预测细胞生长、产量以及CSPR 用于克隆筛选、培养基开发的DOE实验;验证更高细胞密度的培养及放大的一致性;Ambr? 250系统的推广使用 实现pH、DO等参数实时监控,用于参数优化及细胞生长预测;用作灌流培养中细胞截留设备;微流控单细胞分析技术评估细胞特性
表1  高通量灌流培养模型比较
[1] Rathore A. Implementation of quality by design (QbD) for biopharmaceutical products. PDA Journal of Pharmaceutical Science and Technology, 2010,64(6):495-496.
pmid: 21502059
[2] Rathore A S, Winkle H. Quality by design for biopharmaceuticals. Nature Biotechnology, 2009,27(1):26-34.
doi: 10.1038/nbt0109-26 pmid: 19131992
[3] Bhavyasri K, Vishnumurthy K M, Rambabu D, et al. ICH guidelines-“Q” series (quality guidelines)-A review. GSC Biological and Pharmaceutical Sciences, 2019,6(3):89-106.
doi: 10.30574/gscbps
[4] Lu J, Wang J, Hollenbach M, et al. Process scale up and characterization of an intensified perfusion process. [2020-08-29].https://dc.engconfintl.org/ccexvi/222.
[5] Butler M. Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Applied Microbiology and Biotechnology, 2005,68(3):283-291.
doi: 10.1007/s00253-005-1980-8
[6] Walther J, Godawat R, Hwang C, et al. The business impact of an integrated continuous biomanufacturing platform for recombinant protein production. Journal of Biotechnology, 2015,213:3-12.
[7] Croughan M S, Konstantinov K B, Cooney C. The future of industrial bioprocessing: batch or continuous? Biotechnology and Bioengineering, 2015,112(4):648-651.
[8] Dorai H, Ganguly S. Mammalian cell-produced therapeutic proteins: heterogeneity derived from protein degradation. Current Opinion in Biotechnology, 2014,30:198-204.
[9] Pollock J, Ho S V, Farid S S. Fed-batch and perfusion culture processes: economic, environmental, and operational feasibility under uncertainty. Biotechnology and Bioengineering, 2013,110(1):206-219.
[10] Yang W C, Lu J, Kwiatkowski C, et al. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality. Biotechnology Progress, 2014,30(3):616-625.
[11] Noorman H. An industrial perspective on bioreactor scale-down: what we can learn from combined large-scale bioprocess and model fluid studies. Biotechnology Journal, 2011,6(8):934-943.
[12] Schäpper D, Alam M N H Z, Szita N, et al. Application of microbioreactors in fermentation process development: a review. Analytical and Bioanalytical Chemistry, 2009,395(3):679-695.
[13] Szita N, Boccazzi P, Zhang Z, et al. Development of a multiplexed microbioreactor system for high-throughput bioprocessing. Lab On A Chip, 2005,5(8):819-826.
pmid: 16027932
[14] Huang C, Lee G. A microfluidic system for automatic cell culture. Journal of Micromechanics and Microengineering, 2007,17(7):1266-1274.
[15] Maharbiz M M, Holtz W J, Howe R T, et al. Microbioreactor arrays with parametric control for high-throughput experimentation. Biotechnology and Bioengineering, 2004,85(4):376-381.
[16] Zhang Z, Perozziello G, Boccazzi P, et al. Microbioreactors for bioprocess development. Journal of Laboratory Automation, 2007,12(3):143-151.
[17] Krommenhoek E E, Van Leeuwen M, Gardeniers H, et al. Lab-scale fermentation tests of microchip with integrated electrochemical sensors for pH, temperature, dissolved oxygen and viable biomass concentration. Biotechnology and Bioengineering, 2008,99(4):884-892.
[18] Boccazzi P, Zhang Z, Kurosawa K, et al. Differential gene expression profiles and real-time measurements of growth parameters in Saccharomyces cerevisiae grown in microliter-scale bioreactors equipped with internal stirring. Biotechnology Progress, 2006,22(3):710-717.
[19] Cervera A E, Petersen N, Lantz A E, et al. Application of near-infrared spectroscopy for monitoring and control of cell culture and fermentation. Biotechnology Progress, 2009,25(6):1561-1581.
pmid: 19787698
[20] Krommenhoek E E, Gardeniers J G E, Bomer J G, et al. Integrated electrochemical sensor array for on-line monitoring of yeast fermentations. Analytical Chemistry, 2007,79(15):5567-5573.
[21] Voisard D, Meuwly F, Ruffieux P A, et al. Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnology and Bioengineering, 2003,82(7):751-765.
pmid: 12701141
[22] Jordan M, Jenkins N. Tools for high-throughput medium and process optimization//Pörtner R. Animal Cell Biotechnology. Methods in Biotechnology. Totowa: Humana Press, 2007: 193-202.
[23] Fernandez D, Femenia J, Cheung D, et al. Scale-down perfusion process for recombinant protein expression//Kitagawa Y, Matsuda T, Iijima S. Animal Cell Technology: Basic & Applied Aspects. Berlin: Springer, 2008: 59-65.
[24] Janoschek S, Schulze M, Zijlstra G, et al. A protocol to transfer a fed-batch platform process into semi-perfusion mode: the benefit of automated small-scale bioreactors compared to shake flasks as scale-down model. Biotechnology Progress, 2019,35(2):e2757.
doi: 10.1002/btpr.2757 pmid: 30479066
[25] Villiger-Oberbek A, Yang Y, Zhou W, et al. Development and application of a high-throughput platform for perfusion-based cell culture processes. Journal of Biotechnology, 2015,212:21-29.
pmid: 26197419
[26] Wolf M K, Lorenz V, Karst D J, et al. Development of a shake tube-based scale-down model for perfusion cultures. Biotechnology and Bioengineering, 2018,115(11):2703-2713.
pmid: 30039852
[27] Gomez N, Ambhaikar M, Zhang L, et al. Analysis of tubespins as a suitable scale-down model of bioreactors for high cell density CHO cell culture. Biotechnology Progress, 2017,33(2):490-499.
pmid: 27977914
[28] Wolf M K F, Muller A, Souquet J, et al. Process design and development of a mammalian cell perfusion culture in shake-tube and benchtop bioreactors. Biotechnology and Bioengineering, 2019,116(8):1973-1985.
[29] Moses S, Manahan M, Ambrogelly A, et al. Assessment of AMBRTM as a model for high-throughput cell culture process development strategy. Advances in Bioscience and Biotechnology, 3(7), 918-927.
[30] Delouvroy F, Siriez G, Tran A-V, et al. Ambr TM Mini-bioreactor as a high-throughput tool for culture process development to accelerate transfer to stainless steel manufacturing scale: comparability study from process performance to product quality attributes . BMC Proceedings, 2015,9:P78.
[31] Janakiraman V, Kwiatkowski C, Kshirsagar R, et al. Application of high-throughput mini-bioreactor system for systematic scale-down modeling, process characterization, and control strategy development. Biotechnology Progress, 2015,31(6):1623-1632.
pmid: 26317495
[32] Hsu W, Hsu W, Hsu W, et al. Advanced microscale bioreactor system: a representative scale-down model for bench-top bioreactors. Cytotechnology, 2012,64(6):667-678.
[33] Kelly W J, Veigne S, Li X, et al. Optimizing performance of semi-continuous cell culture in an ambr15 TM microbioreactor using dynamic flux balance modeling . Biotechnology Progress, 2018,34(2):420-431.
pmid: 29152911
[34] Kreye S, Stahn R, Nawrath K, et al. A novel scale-down mimic of perfusion cell culture using sedimentation in an automated microbioreactor (SAM). Biotechnology Progress, 2019,35(5):e2832.
[35] Draoui N, Feron O. Lactate shuttles at a glance: from physiological paradigms to anti-cancer treatments. Disease Models & Mechanisms, 2011,4(6):727-732.
doi: 10.1242/dmm.007724 pmid: 22065843
[36] Qian Y, Xing Z, Lee S, et al. Hypoxia influences protein transport and epigenetic repression of CHO cell cultures in shake flasks. Biotechnology Journal, 2014,9(11):1413-1424.
[37] Gagliardi T, Chelikani R, Yang Y, et al. Development of a novel, high-throughput screening tool for efficient perfusion-based cell culture process development. Biotechnology Progress, 2019,35(4):e2811.
pmid: 30932357
[38] Kim H S, Lee G M. Differences in optimal pH and temperature for cell growth and antibody production between two Chinese hamster ovary clones derived from the same parental clone. Journal of Microbiology and Biotechnology, 2007,17(5):712-720.
[39] Velugula-Yellela S R, Williams A, Trunfio N, et al. Impact of media and antifoam selection on monoclonal antibody production and quality using a high throughput micro-bioreactor system. Biotechnology Progress, 2018,34(1):262-270.
[40] Zoro B, Ahmad A, Rees-Manley A, et al. Developing new perfusion capabilities for ambr (R) micro and mini bioreactors. [2020-08-29].https://dc.engconfintl.org/biomanufact_iv/10.
[41] Robin J, Bandow N, Barrett S, et al. Scale-down high-throughput perfusion development with ambr 250. [2020-08-29].https://dc.engconfintl.org/ccexvi/10.
[42] Lowry A. Single-use systems advance upstream processing.[2020-08-29]. http://www.biopharminter-national.com/single-use-systems-advance-upstream-processing.
[43] Walls P L L, Mcrae O, Natarajan V, et al. Quantifying the potential for bursting bubbles to damage suspended cells. Scientific Reports, 2017,7(1):15102.
pmid: 29118382
[44] Terry S C, Jerman J H, Angell J B. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Transactions on Electron Devices, 1979,26(12):1880-1886.
[45] Harrison D J, Manz A, Fan Z, et al. Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Analytical Chemistry, 1992,64(17):1926-1932.
[46] Manz A, Graber N, Widmer H á. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and Actuators B: Chemical, 1990,1(1-6):244-248.
[47] Hegab H M, Elmekawy A, Stakenborg T. Review of microfluidic microbioreactor technology for high-throughput submerged microbiological cultivation. Biomicrofluidics, 2013,7(2):021502.
[48] Kirk T V, Szita N. Oxygen transfer characteristics of miniaturized bioreactor systems. Biotechnology and Bioengineering, 2013,110(4):1005-1019.
[49] Jaccard N, Griffin L D, Keser A, et al. Automated method for the rapid and precise estimation of adherent cell culture characteristics from phase contrast microscopy images. Biotechnology and Bioengineering, 2014,111(3):504-517.
[50] Lu S. Microfluidic Assays for perfusion culture and chemical monitoring of living cells. Michigan:University of Michigan, 2017.
[51] Du G, Fang Q, Den Toonder J M. Microfluidics for cell-based high throughput screening platforms-a review. Analytica Ahimica Acta, 2016,903:36-50.
[52] Wohlgemuth R, Plazl I, Žnidarsicplazl P, et al. Microscale technology and biocatalytic processes: opportunities and challenges for synthesis. Trends in Biotechnology, 2015,33(5):302-314.
[53] Marques M P, Szita N. Bioprocess microfluidics: applying microfluidic devices for bioprocessing. Current Opinion in Chemical Engineering, 2017,18:61-68.
[54] Bjork S M, Joensson H N. Microfluidics for cell factory and bioprocess development. Current Opinion in Biotechnology, 2019,55:95-102.
pmid: 30236890
[55] Buchenauer A, Hofmann M, Funke M, et al. Micro-bioreactors for fed-batch fermentations with integrated online monitoring and microfluidic devices. Biosensors and Bioelectronics, 2009,24(5):1411-1416.
pmid: 18929478
[56] Blesken C, Olfers T, Grimm A, et al. The microfluidic bioreactor for a new era of bioprocess development. Engineering in Life Sciences, 2016,16(2):190-193.
[57] Funke M, Buchenauer A, Schnakenberg U, et al. Microfluidic biolector-microfluidic bioprocess control in microtiter plates. Biotechnology and Bioengineering, 2010,107(3):497-505.
[58] Schapper D, Stocks S M, Szita N, et al. Development of a single-use microbioreactor for cultivation of microorganisms. Chemical Engineering Journal, 2010,160(3):891-898.
[59] Paik S-M, Sim S-J, Jeon N L. Microfluidic perfusion bioreactor for optimization of microalgal lipid productivity. Bioresource Technology, 2017,233:433-437.
[60] Kwon T, Prentice H, Oliveira J, et al. Microfluidic cell retention device for perfusion of mammalian suspension culture. Scientific Reports, 2017,7(1):6703.
pmid: 28751635
[61] Kwon T. Novel micro/nanofluidic system for separation and monitoring of cells and proteins in perfusion. Massachusetts: Massachusetts Institute of Technology, 2019.
doi: 10.1142/S2339547815500016 pmid: 26161433
[62] Grünberger A, Wiechert W, Kohlheyer D. Single-cell microfluidics: opportunity for bioprocess development. Current Opinion in Biotechnology, 2014,29:15-23.
[63] Super A, Jaccard N, Marques M P C, et al. Real-time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device. Biotechnology Journal, 2016,11(9):1179-1189.
pmid: 27214658
[64] Gernaey K V, Baganz F, Franco-Lara E, et al. Monitoring and control of microbioreactors: an expert opinion on development needs. Biotechnology Journal, 2012,7(10):1308-1314.
[65] Sandner V, Pybus L P, Mccreath G, et al. Scale-down model development in ambr systems: an industrial perspective. Biotechnology Journal, 2019,14(4):1700766.
[66] Campbell A M, Brieva T, Raviv L, et al. Concise review: process development considerations for cell therapy. Stem Cells Translational Medicine, 2015,4(10):1155-1163.
pmid: 26315572
[1] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[2] 时忠林,崔俊生,杨柯,胡安中,李亚楠,刘勇,邓国庆,朱灿灿,朱灵. 基于微流控芯片的核酸等温扩增技术研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 116-128.
[3] 栗波,王泽建,梁剑光,刘爱军,李海东. 等离子体作用结合氧限制模型选育利福霉素SV高产菌株 *[J]. 中国生物工程杂志, 2021, 41(2/3): 38-44.
[4] 范雁,杨淼,薛松. 基于光谱法-图像灰度法高通量筛选高效固定CO2的苯甲酸脱羧酶*[J]. 中国生物工程杂志, 2021, 41(11): 55-63.
[5] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[6] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[7] 戴寒莹,徐克前. DNA双链断裂检测技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 55-62.
[8] 庞建达,宋伊宁,王昕蕊,孙树民. 抗体芯片技术及其在寄生虫研究中的应用 *[J]. 中国生物工程杂志, 2019, 39(7): 85-90.
[9] 陈亮,高姗,毛海央,王云翔,冀斌,金志颖,康琳,杨浩,王景林. 超大表面积自驱动微流控芯片的设计与制备 *[J]. 中国生物工程杂志, 2019, 39(6): 17-24.
[10] 潘卫兵,朱鹏,曾启昂,王凯,刘松. 5例前列腺癌T细胞受体β链CDR3的多样性分析 *[J]. 中国生物工程杂志, 2019, 39(3): 7-12.
[11] 苏爽,金永杰,黄瑞晶,李剑,徐寒梅. 哺乳动物细胞灌流培养工艺研究进展[J]. 中国生物工程杂志, 2019, 39(3): 105-110.
[12] 宋佳雯, 田苏, 张玉如, 王志珍, 常忠义, 高红亮, 步国建, 金明飞. 基因组重排筛选高产谷氨酰胺转胺酶菌株[J]. 中国生物工程杂志, 2017, 37(9): 105-111.
[13] 贺霖伟, 刘璋敏, 冯雁, 崔莉. 谷氨酸依赖型氨基转移酶的高通量筛选方法及其应用[J]. 中国生物工程杂志, 2017, 37(8): 59-65.
[14] 徐媛媛, 俞翰炳, 吴飞华, 吴晓梅. 基因组时代林木抗病分子机理研究的新进展[J]. 中国生物工程杂志, 2017, 37(6): 114-123.
[15] 蒋丽莉,郑峻松,李艳,邓均,方立超,黄辉. 基于微流控芯片的体外血脑屏障模型构建 *[J]. 中国生物工程杂志, 2017, 37(12): 1-7.