Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (5): 78-83    DOI: 10.13523/j.cb.1912002
综述     
噬菌体分离纯化技术研究进展*
秦旭颖,杨洪江()
工业发酵微生物教育部重点实验室 天津市工业微生物重点实验室 天津科技大学生物工程学院 天津 300457
Research Progress on Techniques for Separation, Purification of Bacteriophages
QIN Xu-ying,YANG Hong-jiang()
Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
 全文: PDF(523 KB)   HTML
摘要:

噬菌体应用领域十分广泛,因此在制备噬菌体过程中,需采用不同的技术或几种技术相结合的方法来获得具有不同纯度的噬菌体制剂。常用的技术主要包括沉淀、过滤和离心。近年来,色谱技术、场流分流技术和电泳技术等的应用,为制备噬菌体制剂提供了新的方向。

关键词: 噬菌体色谱场流分馏介电电泳    
Abstract:

Bacteriophage is widely used in many fields, so in the process of preparing phage, the different techniques or several techniques to obtain phage preparations with different purity to be used. The techniques commonly used to separate and purify phage are precipitation, filtration and centrifugation. In recent years, the application of chromatographic, field-flow fractionation techniques and electrophoresis techniques provides a new direction for obtaining phage preparations.

Key words: Bacteriophage    Chromatography    Field-flow fractionation    Dielectrophoresis
收稿日期: 2019-12-01 出版日期: 2020-06-02
ZTFLH:  Q815  
基金资助: * 国家自然科学基金(31970150)
通讯作者: 杨洪江     E-mail: hongjiangyang@tust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
秦旭颖
杨洪江

引用本文:

秦旭颖,杨洪江. 噬菌体分离纯化技术研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 78-83.

QIN Xu-ying,YANG Hong-jiang. Research Progress on Techniques for Separation, Purification of Bacteriophages. China Biotechnology, 2020, 40(5): 78-83.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1912002        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I5/78

图1  非对称流场流分馏技术原理示意图
图2  基于绝缘体的介电电泳通道示意图
[1] Keen E C . A century of phage research: Bacteriophages and the shaping of modern biology. Bioessays, 2015,37(1):6-9.
[2] Ofir G, Sorek R . Contemporary phage biology: from classic models to new insights. Cell, 2018,172(6):1260-1270.
[3] Danovaro R, Corinaldesi C, Dell'anno A , et al. Marine viruses and global climate change. FEMS Microbiol Rev, 2011,35(6):993-1034.
[4] Després V R, Huffman J A, Burrows S M , et al. Primary biological aerosol particles in the atmosphere: a review. Tellus B, 2012,64(1):1-58.
[5] Anderson R E, Brazelton W J, Baross J A . The deep viriosphere: assessing theviral impact on microbial community dynamics in the deep subsurface. Rev Mineral Geochem, 2013,75(1):649-675.
[6] Hankin E H . L'action bactericide des eaux de la Jumna et du Gange sur le vibrion du cholera. Ann Inst Pasteur, 1896,10:511-523.
[7] d'Hérelle F . Sur un microbe invisible antagonistic des bacilles dysenteriques. Acad Sci, 1917,165:373-375.
[8] Summers, W C . Felix d'Herelle and the origins of molecular biology. Journal of the History of New Haven and London, 1999,45(2):230.
[9] Mills S, Shanahan F, Stanton C , et al. Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota. Gut Microbes, 2013,4(1):4-16.
[10] Lepage P, Leclerc M C, Joossens M , et al. A metagenomic insight into our gut's microbiome. Gut, 2013,62(1):146-158.
[11] Ma Y F, You X Y, Mai G Q , et al. A human gut phage catalog correlates the gut phageome with type 2 diabetes. Microbiome, 2018,6(1):24.
[12] Chehoud C, Dryga A, Hwang Y , et al. Transfer of viral communities between human individuals during fecal microbiota transplantation. MBio, 2016,7(2):e00322-16.
[13] Ott S J, Waetzig G H, Rehman A , et al. Efficacy of sterile fecal filtrate transfer for treating patients with clostridium difficile infection. Gastroenterology, 2017,152(4):799-811.
[14] Zuo T, H Wong S, Lam K , et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut Microbiota, 2018,67(4):634-643.
[15] Council of Europe. European pharmacopoeia2.6.14 bacterial endotoxins. 5.0nd. Europe: EDQM Press, 2005: 161-168.
[16] Food and Drug Administration FDA Alerts Health Care Professionals of Significant Safety Risks Associated with Cesium Chloride [Online]. Food and Drug Administration.[2018]. https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/PharmacyCompounding/ucm614211.htm(accessed 26th March 2019).
[17] Wolf M W, Reichl U . Downstream processing of cell culture-derived virus particles. Expert Rev Vaccines, 2011,10(10):1451-1475.
doi: 10.1586/erv.11.111
[18] Wilhelm S W, Weinbauer M G, Suttle C A . Manual of aquatic viral ecology. Waco, TX: ASLO, 2010: 166-181.
[19] Trépanier P, Payment P, Trudel M . Concentration of human respiratory syncytial virus using ammonium sulfate, polyethylene glycol or hollow fiber ultrafiltration. J Virol Methods, 1981,3(4):201-211.
doi: 10.1016/0166-0934(81)90071-9
[20] Kay B K, Winter J, McCafferty J . Phage display of peptides and prote-ins:a laboratory manual. San Diego: Academic Press, 1996: 38-42.
[21] Subramanian S, Altaras G M, Chen J , et al. Pilot-scale adenovirus seed production through concurrent virus release and concentration by hollow fiber filtration. Biotechnol Prog, 2005,21(3):851-859.
[22] Woo Y J, Zhang J C, Taylor M D , et al. One year transgene expression with adeno-associated virus cardiac gene transfer. Int J Cardiol, 2005,100(3):421-426.
[23] Mbiguino A, Menezes J . Purification of human respiratory syncytial virus: superiority of sucrose gradient over percoll, renografin, and metrizamide gradients. J Virol Methods, 1991,31(2-3):161-170.
[24] Peng H H, Wu S, Davis J J , et al. A rapid and efficient method for purification of recombinant adenovirus with arginine-glycine-aspartic acid-modified fibers. Anal Biochem, 2006,354(1):140-147.
[25] Gias E, Nielsen S U, Morgan L A F , et al. Purification of human respiratory syncytial virus by ultracentrifugation in iodixanol density gradient. J Virol Methods, 2008,147(2):328-332.
[26] Trépanier P, Payment P, Trudel M . Concentration of human respiratory syncytial virus using ammonium sulfate, polyethylene glycol or hollow fiber ultrafiltration. J Virol Methods, 1981,3(4):201-211.
doi: 10.1016/0166-0934(81)90071-9
[27] Segura M M, Kamen A, Trudel P , et al. A novel purification strategy for retrovirus gene therapy vectors using heparin affinity chromatography. Biotechnol Bioeng, 2005,90(4):391-404.
[28] Lara A R, Ramírez O T, Wunderlich M . Plasmid DNA production for therapeutic applications. Methods Mol Biol, 2012,824:271-303.
[29] Wu Y, Simons J, Hooson S , et al. Protein and virus-like particle adsorption on perfusion chromatography media. J Chromatogr A, 2013,1297:96-105.
[30] Yu M, Li Y, Zhang S , et al. Improving stability of virus-like particles by ion-exchange chromatographic supports with large pore size: advantages of gigaporous media beyond enhanced binding capacity. J Chromatogr A, 2014,1331(1):69-79.
[31] Burden C S, Jin J, Podgornik A , et al. A monolith purification process for virus-like particles from yeast homogenate. J Chromatogr B, 2012,880(1):82-89.
[32] Trilisky E I, Lenhoff A M . Sorption processes in ionexchange chromatography of viruses. J Chromatogr A, 2007,1142(1):2-12.
[33] Urthaler J, Schlegl R, Podgornik A , et al. Application of monoliths for plasmid DNA purification development and transfer to production. J Chromatogr A, 2005,1065(1):93-106.
[34] Strancar A, Podgornik A, Barut M , et al. Short monolithic columns as stationary phases for biochromatography. Adv Biochem Eng Biotechnol, 2002,76(1):49-85.
[35] Segura M M, Kamen A, Trudel P , et al. A novel purification strategy for retrovirus gene therapy vectors using heparin affinity chromatography. Biotechnol Bioeng, 2005,90(4):391-404.
doi: 10.1002/(ISSN)1097-0290
[36] Sain B, Erdei S . Bacteriophage purification by gel chromatography. Anal Biochem, 1981,110(1):128-130.
[37] Zakharova M Y, Kozyr A V, Ignatova A N , et al. Purification of filamentous bacteriophage for phage display using size-exclusion chromatography. BioTechniques, 2005,38(2):194-198.
doi: 10.2144/05382BM04
[38] Giddings J C, Yang F J, Myers M N . Flow-field-flow fractionation: a versatile new separation method. Science, 1976,193(4259):1244-1245.
[39] Wahlund K G, Giddings J C . Properties of an asymmetrical flow field-flow fractionation channel having one permeable wall. Anal Chem, 1987,59(9):1332-1339.
[40] Williams S K, Lee D . Field-flow fractionation of proteins, polysaccharides, synthetic polymers, and supramolecular assemblies. J Sep Sci, 2006,29(12):1720-1732.
[41] Giddings J C, Ratanathanawongs S K, Moon M H . Field-flow fractionation: a versatile technology for particle characterization in the size range 10-3 to 102 micrometers . KONA Powder Part J, 1991,9:200-217.
[42] Eskelin K, Lampi M, Meier F , et al. Asymmetric flow field flow fractionation methods for virus purification. J Chromatogr A, 2016,1469:108-119.
[43] Eskelin K, Lampi M, Meier F , et al. Halophilic viruses with varying biochemical and biophysical properties are amenable to purification with asymmetrical flow field-flow fractionation. Extremophiles, 2017,21(6):1119-1132.
[44] Lampi M, Oksanen H M, Meier F , et al. Asymmetrical flow field-flow fractionation in purification of an enveloped bacteriophage 6. J Chromatogr B Analyt Technol Biomed Life Sci, 2018,1095:251-257.
[45] Somasundaram B, Chang C, Fan Y Y , et al. Characterizing enterovirus 71 and coxsackievirus A16 virus-like particles production in insect cells. Methods, 2016,95:38-45.
[46] Chen Y, Zhang Y, Zhou Y , et al. Asymmetrical flow field-flow fractionation coupled with multi-angle laser light scattering for stability comparison of virus-like particles in different solution environments. Vaccine, 2016,34(27):3164-3170.
[47] Wei Z, Mcevoy M, Razinkov V , et al. Biophysical characterization of influenza virus subpopulations using field flow fractionation and multiangle light scattering: correlation of particle counts, size distribution and infectivity. J Virol Methods, 2007,144(1-2):122-132.
[48] Eskelin K, Poranen M M . Controlled disassembly and purification of functional viral subassemblies using asymmetrical flow field-flow fractionation (AF4). Viruses, 2018,10(11):579-592.
[49] Liew M W, Chuan Y P, Middelberg A P . High-yield and scalable cell-free assembly of virus-like particles by dilution. Biochem Eng J, 2012,67:88-96.
doi: 10.1016/j.bej.2012.05.007
[50] Chuan Y P, Fan Y Y, Lua L , et al. Quantitative analysis of virus-like particle size and distribution by field-flow fractionation. Biotechnol Bioeng, 2008,99(6):1425-1433.
[51] Whitesides G M . The origins and the future of microfluidics. Nature, 2006,442(7101):368-373.
[52] Jones P V, Salmon G L, Ros A . Continuous separation of DNA molecules by size using insulator-based dielectrophoresis. Anal Chem, 2017,89(3):1531-1539.
doi: 10.1021/acs.analchem.6b03369
[53] Ding J, Lawrence R M, Jones P V , et al. Concentration of Sindbis virus with optimized gradient insulator-based dielectrophoresis. Analyst, 2016,141(6):1997-2008.
[54] Romero-Creel M F, Goodrich E, Polniak D V , et al. Assessment of sub-micron particles by exploiting charge differences with dielectrophoresis. Micromachines, 2017,8(8):239.
doi: 10.3390/mi8080239
[55] Polniak D V, Goodrich E, Hill N , et al. Separating large microscale particles by exploiting charge differences with dielectrophoresis. J Chromatogr A, 2018,1545:84-92.
[56] Grom F, Kentsch J, Müller T , et al. Accumulation and trapping of hepatitis A virus particles by electrohydrodynamic flow and dielectrophoresis. Electrophoresis, 2006,27(7):1386-1393.
doi: 10.1002/(ISSN)1522-2683
[57] Voldman J . Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng, 2006,8:425-454.
[58] Madiyar F R, Syed L U, Culbertson C T , et al. Manipulation of bacteriophages with dielectrophoresis on carbon nanofiber nanoelectrode arrays. Electrophoresis, 2013,34(7):1123-1130.
[59] Sonnenberg A, Marciniak J Y, McCanna J , et al. Dielectrophoretic isolation and detection of cfc-DNA nanoparticulate biomarkers and virus from blood. Electrophoresis, 2013,34(7):1076-1084.
[60] Coll De Pe?a A, Mohd Redzuan N H, Abajorga M K , et al. Analysis of bacteriophages with insulator-based dielectrophoresis. Micromachines, 2019,10(7):450.
[61] 梁莉, 杨洪江, 金鑫 . 鲍曼不动杆菌烈性噬菌体的分离与纯化. 生物学杂志, 2010,27(4):88-93.
Liang L, Yang H J, Jin X . Purification of Acinetobacter baumannii bacteriophage. Journal of Biology. 2010,27(4):88-93.
[1] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[2] 陈修月,周文锋,何庆,苏冰,邹亚文. 噬菌体Qβ病毒样颗粒的制备、纯化及鉴定[J]. 中国生物工程杂志, 2021, 41(7): 42-49.
[3] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[4] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.
[5] 王国强,于茵茵,曾华辉,王旭东,吴玉彬,尚立芝,李玉林,张怡青,张西西,张振强,王云龙. 基于MS2噬菌体病毒样颗粒的RT-PCR检测新型冠状病毒(SARS-CoV-2)质控品制备*[J]. 中国生物工程杂志, 2020, 40(12): 31-40.
[6] 赵建民,张思源. 耐药菌感染的噬菌体治疗专利技术[J]. 中国生物工程杂志, 2020, 40(10): 104-111.
[7] 高彦,杜晶晶,王斌,刘琦,申志强. 气相色谱法对狂犬病疫苗灭活工艺中β-丙内酯研究[J]. 中国生物工程杂志, 2019, 39(6): 25-31.
[8] 陈秀秀,吴成林,周丽君. 人源抗体制备及临床应用研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 90-96.
[9] 丁威,冯延宾,曹旭鹏,薛松. Acyl-ACPs的规模化合成[J]. 中国生物工程杂志, 2018, 38(4): 63-69.
[10] 李金晶,许菲,季艳伟,舒梅,涂追,付金衡. 抗c-Myc标签纳米抗体的筛选与应用[J]. 中国生物工程杂志, 2018, 38(2): 61-67.
[11] 庞倩,陈晶,王小红,王佳. 基于噬菌体展示技术抗黄曲霉毒素B1单链抗体的筛选及其蛋白结构分析 *[J]. 中国生物工程杂志, 2018, 38(12): 41-48.
[12] 方媛,徐广贤,王羡,王红霞,潘俊斐. 双峰驼源天然噬菌体纳米抗体展示库的构建及抗GDH纳米抗体筛选 *[J]. 中国生物工程杂志, 2018, 38(12): 49-56.
[13] 郎巧利,余琳,何麒麟,葛良鹏,杨希. 高效构建卵清白蛋白scFv噬菌体文库及其筛选 *[J]. 中国生物工程杂志, 2018, 38(11): 25-31.
[14] 张奇,姚琳,江艳华,李风铃,张媛,许东勤,朱文嘉,郭莹莹,王联珠,翟毓秀. 基于Qbeta噬菌体装甲RNA技术的诺如病毒RNA标准参考样品的研制[J]. 中国生物工程杂志, 2018, 38(1): 42-50.
[15] 胡昌武, 谢君, 朱乃硕. 7肽和12肽两种M13噬菌体展示库筛选肿瘤坏死因子alpha拮抗肽的比较[J]. 中国生物工程杂志, 2017, 37(5): 1-8.