Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (5): 45-54    DOI: 10.13523/j.cb.2211020
    
Effects of Magnetic Nano-metals on Growth Characteristics and Intracellular Ectoine Accumulation of Halomonas sp. XH26
WANG Ming-xiang1,GUO Min1,GAO Xiang1,LI Yong-zhen1,HAN Rui2,ZHU De-rui1,SHEN Guo-ping1,**()
1 Research Center of Basic Medical Science, Medical College, Qinghai University, Xining 810016, China
2 Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
Download: HTML   PDF(1434KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Ectoine, a compatible solute, is widely distributed in halophilic bacteria to resist extreme environmental conditions. The aim of this study is to increase the accumulation of ectoine in wild-type Halomonas campaniensis sp. XH26. Methods: Magnetic nanoparticles (Fe3O4 NPs) were used, and single factor analysis, Plackett-Burman design and the response surface method were performed to evaluate the intracellular accumulation of ectoine and bacterial growth. The feasibility of nano-metal application in Halomonas fermentation was further discussed. Results: According to single factor analysis, Fe3O4 NPs can promote the strain growth and accumulation of ectoine. The optimal period for adding Fe3O4 NPs was the logarithmic growth stage of the strain. Plackett-burman and the response surface results revealed that ectoine accumulation of the strain reached 640.28 mg/L in shaker fermentation, under the optimized conditions(Fe3O4 NPs: 0.05 g/L; NaCl: 1.53 mol/L; MSG: 0.03 mol/L), which was 63.61% higher than that of the wild strain (391.35 mg/L). Transmission electron microscopy indicated that Fe3O4 NPs accumulated on the surface of bacterial cell membrane, which may play a catalytic role through surface adsorption. Conclusions: In summary, Fe3O4 NPs can effectively promote the accumulation of ectoine, and the combination of Plackett-Burman and the response surface method can better optimize the fermentation conditions of the strain. This study provides a new technical idea and reference for the subsequent application of magnetic nano-metal particles in the industrial production of ectoine by fermentation.



Key wordsHalomonas sp.      Ectoine      Fe3O4 NPs      High-performance liquid chromatography      Response surface method     
Received: 10 November 2022      Published: 01 June 2023
ZTFLH:  Q819  
Cite this article:

WANG Ming-xiang, GUO Min, GAO Xiang, LI Yong-zhen, HAN Rui, ZHU De-rui, SHEN Guo-ping. Effects of Magnetic Nano-metals on Growth Characteristics and Intracellular Ectoine Accumulation of Halomonas sp. XH26. China Biotechnology, 2023, 43(5): 45-54.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2211020     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I5/45

实验 因素 变量 水平
-1 0 +1
Plackett-Burman Fe3O4 NPs/(g/L) X1 0.01 - 0. 1
pH X2 7.2 - 8.4
L-谷氨酸钠(MSG,mol/L) X3 0.02 - 0.05
天冬氨酸(L-Asp,mmol/L) X4 0 - 2
NaCl/(mol/L) X5 0 - 2
温度 (T,℃) X6 25 - 40
虚拟因素 X7~X9 - - -
Box-Behnken Fe3O4 NPs/(g/L) A 0.02 0.045 0.07
NaCl/(mol/L) B 0.02 0.03 0.04
L-谷氨酸钠(MSG,mol/L) C 1 1.5 2
Table 1 Factor levels involved in the tests
Fig.1 Effects of Fe3O4 NPs on XH26 strain bacterial growth and intracellular ectoine accumulation under different conditions (a)Strain growth curve after adding Fe3O4 NPs at the initial growth stage (b) Strain growth curve with Fe3O4 NPs added in logarithmic phase (c)Ectoine accumulation of strains in different periods; a:Control group; b:Adding simultaneously group ; c:Logarithmic phase added group (d)Accumulation of ectoine in 0.1 g/L Fe3O4 NPs-treated strains at different pH; c:Control group (e) Ectoine accumulation of 0.1 g/L Fe3O4 NPs-treated strain under different NaCl concentrations (f) Ectoine accumulation of 0.1 g/L Fe3O4 NPs treated strains under different MSG concentrations; c:Control group * P<0.05, ** P<0.001
Fig.2 Growth curve of XH26 strain and Ectoine accumulation under different concentration of Fe3O4 NPs (a),(b) Growth curves of the strain under different concentrations of Fe3O4 NPs (c),(d) Intracellular Ectoine accumulation under different concentrations of Fe3O4 NPs in strains;c: Control group * P<0.05, ** P<0.001
方差来源 平方和 自由度 均方 F P 显著性
模型 153 600 6 25 595.07 8.33 0.017 2 *
X1 90 158.70 1 90 158.70 29.33 0.002 9 *
X2 8 838.72 1 8 838.72 2.88 0.150 7
X3 21 632.21 1 21 632.21 7.04 0.045 3 *
X4 967.11 1 967.11 0.3146 0.599 1
X5 24 946.95 1 24 946.95 8.12 0.035 9 *
X6 7 026.74 1 7 026.74 2.29 0.191 0
残差 15 369.51 5 3 073.90
总离差 168 900 11
Table 2 Results of Plackett-Buman square difference analysis
实验编号 因素 Ectoine/(mg/L)
Fe3O4 NPs /(g/L) 氯化钠/(mol/L) L-谷氨酸钠/(mol/L)
1 0.02 1 0.03 471.04
2 0.07 1 0.03 543.40
3 0.02 2 0.03 372.04
4 0.07 2 0.03 581.10
5 0.02 1.5 0.02 509.55
6 0.07 1.5 0.02 476.49
7 0.02 1.5 0.04 382.82
8 0.07 1.5 0.04 521.09
9 0.045 1 0.02 520.90
10 0.045 2 0.02 471.84
11 0.045 1 0.04 423.37
12 0.045 2 0.04 497.98
13 0.045 1.5 0.03 601.87
14 0.045 1.5 0.03 648.04
15 0.045 1.5 0.03 624.96
16 0.045 1.5 0.03 635.35
17 0.045 1.5 0.03 628.80
Table 3 Box-Behnken design and response
方差来源 平方和 自由度 均方 F P 显著性
模型 114 500 9 12 723.42 14.88 0.000 9 *
A 18 685.34 1 18 685.34 21.85 0.002 3 *
B 159.76 1 159.76 0.186 8 0.678 6
C 2 946.05 1 2 946.05 3.44 0.105 8
AB 4 671.72 1 4 671.72 5.46 0.052 1
AC 7 338.49 1 7 338.49 8.58 0.022 0 *
BC 3 823.57 1 3 823.57 4.47 0.072 3
A2 21 208.53 1 21 208.53 24.80 0.001 6 *
B2 17 755.01 1 17 755.01 20.76 0.002 6 *
C2 29 953.66 1 29 953.66 35.02 0.000 6 *
残差 5 986.62 7 855.23
失拟项 4 838.53 3 1 612.84 5.62 0.064 4
纯误项 1 148.09 4 287.02
总离项 120 500 16
Table 4 Variance analysis for the response surface model
Fig.3 Response surface of pairwise interactions between Fe3O4 NPs, NaCl, and MSG
Fig. 4 Transmission electron microscopic view of strain treated with Fe3O4 NPs. (a) Control group (b)-(d) were all strains supplemented with Fe3O4 NPs
[1]   Maynard A D. Don’t define nanomaterials. Nature, 2011, 475(7354): 31.
doi: 10.1038/475031a
[2]   Huang Y Y, Ren J S, Qu X G. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chemical Reviews, 2019, 119(6): 4357-4412.
doi: 10.1021/acs.chemrev.8b00672 pmid: 30801188
[3]   Chen Y G, Su Y L, Zheng X, et al. Alumina nanoparticles-induced effects on wastewater nitrogen and phosphorus removal after short-term and long-term exposure. Water Research, 2012, 46(14): 4379-4386.
doi: 10.1016/j.watres.2012.05.042 pmid: 22704928
[4]   Zheng X, Su Y L, Chen Y G. Acute and chronic responses of activated sludge viability and performance to silica nanoparticles. Environmental Science & Technology, 2012, 46(13): 7182-7188.
doi: 10.1021/es300777b
[5]   Zheng X, Chen Y G, Wu R. Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge. Environmental Science & Technology, 2011, 45(17): 7284-7290.
doi: 10.1021/es2008598
[6]   Hou J, You G X, Xu Y, et al. Impacts of CuO nanoparticles on nitrogen removal in sequencing batch biofilm reactors after short-term and long-term exposure and the functions of natural organic matter. Environmental Science and Pollution Research, 2016, 23(21): 22116-22125.
doi: 10.1007/s11356-016-7281-1
[7]   Tang J, Zhu N Y, Zhu Y, et al. Responses of periphyton to Fe2O3 nanoparticles: a physiological and ecological basis for defending nanotoxicity. Environ Sci Technol, 2017, 51(18):10797-10805.
doi: 10.1021/acs.est.7b02012 pmid: 28817263
[8]   Gaucin-Delgado J M, Ortiz-Campos A, Hernandez-Montiel L G, et al. CuO-NPs improve biosynthesis of bioactive compounds in lettuce. Plants (Basel, Switzerland), 2022, 11(7): 912.
[9]   Xu Y, Wang C, Hou J, et al. Effects of cerium oxide nanoparticles on bacterial growth and behaviors: induction of biofilm formation and stress response. Environmental Science and Pollution Research, 2019, 26(9): 9293-9304.
doi: 10.1007/s11356-019-04340-w
[10]   Gitanjali H, Ashok C. Synthesis, characterization and stability of gold nanoparticles using the fungus Fusarium oxysporum and its impact on seed germination., Int J Recent Sci Res, 2015, 6(3): 3181-3185.
[11]   Husseiny M I, El-Aziz M A, Badr Y, et al. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2007, 67(3-4): 1003-1006.
doi: 10.1016/j.saa.2006.09.028
[12]   Ballottin D, Fulaz S, Souza M L, et al. Elucidating protein involvement in the stabilization of the biogenic silver nanoparticles. Nanoscale Research Letters, 2016, 11(1): 313.
doi: 10.1186/s11671-016-1538-y pmid: 27356560
[13]   Varshney R, Seema B, Gaur M, et al. Copper nanoparticles synthesis from electroplating industry effluent. Nano Biomedicine and Engineering, 2011, 3(2): 115-119.
[14]   Abdulsattar J, Kadhim A, Haider A. Biosynthesis, characterization and antibacterial effect of Zno nanoparticles synthesized by Lactobacillus spp. Journal of Global Pharma Technology, 2018, 10(3): 348-355.
[15]   Kim Y, Roh Y. Microbial synthesis and characterization of superparamagnetic Zn-substituted magnetite nanoparticles. Journal of Nanoscience and Nanotechnology, 2015, 15(8): 6129-6132.
pmid: 26369212
[16]   沈海军, 史友进. 纳米抗菌材料的分类、制备、抗菌机理及其应用. 中国粉体工业, 2006, 2:18-20.
[16]   Shen H J, Shi Y J. Classification, preparation, antibacterial mechanism and application of nano-antibacterial materials. Chinese Journal of Powder Industry, 2006, 2:18-20.
[17]   Zhang X D, He S H, Chen Z H, et al. CoFe2O4 nanoparticles as oxidase mimic-mediated chemiluminescence of aqueous luminol for sulfite in white wines. Journal of Agricultural and Food Chemistry, 2013, 61(4): 840-847.
doi: 10.1021/jf3041269
[18]   Srikanth Vallabani N V, Karakoti A S, Singh S. ATP-mediated intrinsic peroxidase-like activity of Fe3O4-based nanozyme: one step detection of blood glucose at physiological pH. Colloids and Surfaces B: Biointerfaces, 2017, 153: 52-60.
doi: S0927-7765(17)30076-0 pmid: 28214671
[19]   田磊, 张芳, 沈国平, 等. Ectoine高产菌株Halomonas sp. XH26的鉴定及紫外诱变选育. 生物学杂志, 2020, 37(4): 31-35.
[19]   Tian L, Zhang F, Shen G P, et al. Identification of high-yielding strain Halomonas sp. XH 26 for producing ectoine and UV mutagenesis breeding. Journal of Biology, 2020, 37(4): 31-35.
[20]   Ng H S, Wan P K, Ng T C, et al. Primary purification of intracellular Halomonas salina ectoine using ionic liquids-based aqueous biphasic system. Journal of Bioscience and Bioengineering, 2020, 130(2): 200-204.
doi: 10.1016/j.jbiosc.2020.04.003
[21]   Liu J, Vipulanandan C. Effects of Au/Fe and Fe nanoparticles on Serratia bacterial growth and production of biosurfactant. Materials Science and Engineering: C, 2013, 33(7): 3909-3915.
doi: 10.1016/j.msec.2013.05.026
[22]   Fatollahi P, Ghasemi M, Yazdian F, et al. Ectoine production in bioreactor by Halomonas elongata DSM2581: using MWCNT and Fe-nanoparticle. Biotechnology Progress, 2021, 37(1): e3073.
[23]   Cui P Q, Wang S J, Su H J. Enhanced biohydrogen production of anaerobic fermentation by the Fe3O4 modified mycelial pellets-based anaerobic granular sludge. Bioresource Technology, 2022, 366: 128144.
doi: 10.1016/j.biortech.2022.128144
[24]   Wang J, Cao X S, Wang C X, et al. Fe-based nanomaterial-induced root nodulation is modulated by flavonoids to improve soybean (Glycine max) growth and quality. ACS Nano, 2022, 16(12): 21047-21062.
doi: 10.1021/acsnano.2c08753
[25]   杜京京, 渠文瑞, 张锦, 等. 纳米氧化锌对白地霉生长和胞外降解酶活性的影响. 广西科学, 2021, 28(4): 373-381.
[25]   Du J J, Qu W R, Zhang J, et al. Effects of nano-sized zinc oxide on the growth and extracellular degrading enzyme activity of Geotrichum candidum. Guangxi Sciences, 2021, 28(4): 373-381.
[26]   方国东, 司友斌. 纳米Fe3O4对红壤微生物数量、酶活性及2, 4-D降解的影响. 中国农业科学, 2011, 44(6): 1165-1172.
[26]   Fang G D, Si Y B. Effects of nanoscale Fe3O4 on microbial communities, enzyme activities and 2, 4-D degradation in red soil. Scientia Agricultura Sinica, 2011, 44(6): 1165-1172.
[27]   Liang M M, Yan X Y. Nanozymes: from new concepts, mechanisms, and standards to applications. Accounts of Chemical Research, 2019, 52(8): 2190-2200.
doi: 10.1021/acs.accounts.9b00140 pmid: 31276379
[28]   Li T, Qu A, Yuan X, et al. Response surface method optimization of ectoine fermentation medium with moderate halophilic bacteria Halomonas sp. H02. IOP Conference Series Earth and Environmental Science, 2017, 77(1): 012019.
[29]   He S Y, Feng Y Z, Ren H X, et al. The impact of iron oxide magnetic nanoparticles on the soil bacterial community. Journal of Soils and Sediments, 2011, 11(8): 1408-1417.
doi: 10.1007/s11368-011-0415-7
[30]   周庆. 金属氧化物纳米颗粒对土壤微生物群落及甲霜灵转化的影响. 武汉: 武汉大学, 2020.
[30]   Zhou Q. Effects of metal oxide nanoparticles on soil microbial community and metalaxyl transformation. Wuhan: Wuhan University, 2020.
[1] ZHANG Xu-ning, QUAN Chun-shan, LIAO Ying-ling, LIU Ke-huan, XIONG Wen, FAN Sheng-di. Expression,Purification and Identification of AgrA, a Response Regulator Protein of Two-component Signal Transduction System in Staphylococcus aureus[J]. China Biotechnology, 2015, 35(5): 32-40.
[2] LI Liang, WANG Ze-jian, GUO Mei-jin, CHU Ju, ZHUANG Ying-ping, ZHANG Si-liang. Mutagenesis Breeding and Optimization of Cephalosporin C by Cephalosporium acremonium[J]. China Biotechnology, 2014, 34(8): 61-66.
[3] HAN Qi-can, HUO Guang-hua, LUO Gui-xiang. Screening, Identification and Fermentation Process Optimization of a Wild Fungus Against Pathogens[J]. China Biotechnology, 2014, 34(5): 66-74.
[4] ZHANG Qi, NING Xi-bin, ZHANG Ji-lun. Optimization of Cultivation Conditions for Protease Production from Marine Bacteria by Response Surface Methodology[J]. China Biotechnology, 2013, 33(8): 105-110.
[5] WANG Dan, ZHENG Hong-li, JI Xiao-jun, GAO Zhen. Optimization the Accumulation of Astaxanthin in Chlorella Zofingiensis Using Response Surface Methodology[J]. China Biotechnology, 2013, 33(7): 71-81.
[6] ZHAO Fang-long, ZHU Ling-qing, YANG Xue, LU Wen-yu. Medium Optimization for Rhamnolipids Production by Pseudomonas aeruginosa O-2-2 and LC-MS/MS Analysis[J]. China Biotechnology, 2013, 33(6): 79-85.
[7] WU Ying-chun, MA Qin-qin, DING Xian-feng, ZHANG Kai, LIU Li-li, GUO Jiang-feng. Expression of XRN1 Protein and Optimization of Fermentation Medium with Response Surface Method[J]. China Biotechnology, 2013, 33(4): 121-128.
[8] SUN Guo-xia, WANG Jun, DING Wei-tong, WANG Kai-xuan, WU Fu-an. Process Optimization of Selectively Enzymatic Synthesis of Isoquercitrin Using Ionic Liquid[J]. China Biotechnology, 2013, 33(3): 130-134.
[9] WU Wei-ping, CHEN Jie, LI Ya-qian, CHEN Li-jie, DUAN Yu-xi. Optimization of Fermentation Process for Chlamydospores of Trichoderma asperellum by Response Surface Methodology[J]. China Biotechnology, 2013, 33(12): 97-104.
[10] ZHANG Wen, ZHANG Shu-qing, MA Xiao-tong, HE Cui-cui. The Optimization Research of Fermentation Medium of γ-Polyglutamic Acid(γ-PGA) Produced by Bacillus natto[J]. China Biotechnology, 2013, 33(11): 44-50.
[11] LI Rui-rui, LIU Dian-lei, YANG Qing, HAO Qiong, JIANG Kai-kai, LI Pi-wu. Optimization of Fermentation Conditions for Glucose Oxidase Production by Aspergillus niger using Response Surface Method[J]. China Biotechnology, 2013, 33(10): 111-116.
[12] CHEN Jie, WEI Hong-gang, LUO Yuan-chan, ZHANG Dao-jing, LI Shu-lan, TIAN Li, LI Yuan-guang. Medium Optimization for the Production of New Antifungl Cyclic Lipopeptide Marinhysin A by Bacillus Marinus B-9987[J]. China Biotechnology, 2013, 33(1): 84-89.
[13] CHEN Jie-mei, XU Cong-cong, CHANG Lei, LIU Yong-ping, MIAO Bing-xuan. Study on Optimization of Soybean Meal Solid-state Fermentation Process for Producing Soybean Antioxidative Peptide by Response Surface Methodology[J]. China Biotechnology, 2012, 32(12): 59-65.
[14] YANG Qi, WANG Ke-rong, KONG Wei-bao, YANG Hong, CAO Hai, ZHANG Xin-yun. Optimization of the Mixotrophic Culture Medium Composition for Biomass Production by Chlorella vulgaris Using Response Surface Methodology[J]. China Biotechnology, 2012, 32(09): 70-75.
[15] AI Zuo-zuo, YAN Ri-ming, YUAN Jin-yun, ZHANG Zhi-bin, ZHU Du. Optimization of Single Cell Oil Produced from Cassava Starch by Response Surface Methodology[J]. China Biotechnology, 2012, 32(07): 66-72.