Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (5): 37-44    DOI: 10.13523/j.cb.2210024
    
Effects of Different Signal Peptides and Their Combinations on Heterologous Expression of Levansucrase
WANG Mao-jun,SIMAYI Seyide,CAI Yi-an,LI Qing-gang,LU Fu-ping,LI Yu()
Key Laboratory of Industrial Fermentation Microbiology,Ministry of Education,College of Biotechnology, Tianjin University of Science&Technology,Tianjin 300457,China
Download: HTML   PDF(977KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To express levansucrase in Bacillus amyloliquefaciens 018 (G3) efficiently. Four levansucrase genes lsLich, lsAmy, lsSub and lsMega from different Bacillus species were heterologously expressed, and five signal peptides with relatively high levels of alkaline protease identified by the research group were screened and combined. lsLich derived from Bacillus licheniformis RN-01 had the highest enzyme activity in the recombinant strain G3/pLY-2-lsLich, with an enzyme activity of 62.73 U/mL. LS-Lich was used as the target protein to screen single signal peptide and double signal peptide. The recombinant strain G3/pLY-2-SDA-ls combined with SPDacB and SPAmyE had the highest enzyme activity, and the extracellular enzyme activity reached 125.76 U/mL. Compared with the recombinant strain G3/pLY-2-SD-ls and G3/pLY-2-SA-ls, they increased by 31.3% and 39.2%, respectively, and increased by 100.49% compared with the original strain. The results indicated that the double signal peptide was helpful in increasing the secretion of LS-Lich compared with the single signal peptide, and the combination order of signal peptides also produced some differences.



Key wordsSignal peptide      Levansucrase      Bacillus amyloliquefaciens      Heterologous expression     
Received: 17 October 2022      Published: 01 June 2023
ZTFLH:  Q819  
Cite this article:

WANG Mao-jun, SIMAYI Seyide, CAI Yi-an, LI Qing-gang, LU Fu-ping, LI Yu. Effects of Different Signal Peptides and Their Combinations on Heterologous Expression of Levansucrase. China Biotechnology, 2023, 43(5): 37-44.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2210024     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I5/37

Fig.1 Hydrolysis, glycosylation and polymerization reactions of levansucrase
名称 氨基酸序列 来源
SacB MNIKKFAKQATVLTFTTALLAGGATQAFA B.subtilis 168
DacB MRIFKKAVFVIMISFLIATVNVNTAHA B.subtilis 168
YoaW MKKMLMLAFTFLLALTIHVGEASAV B.subtilis 168
NprE MGLGKKLSVAVAASFMSLSISLPGVQA B.subtilis 168
AmyE MFAKRFKTSLLPLFAGFLLLFHLVLAGPAAASA B.subtilis 168
Table 1 Amino acid sequences of 5 signal peptides and their sources
Fig.2 Schematic diagram of the structure of different signal peptides in the recombinant vector
Fig.3 PCR validation diagram of different expression vectors (a)1: G3/pLY-2-lsSub; 2: G3/pLY-2-lsAmy; 3: G3/pLY-2-lsMega; 4: G3/ pLY-2-lsLich; M: 1 kb DNA ladder (b)1: G3/pLY-2-YoaW-ls; 2: G3/pLY-2-NprE-ls; 3: G3/pLY-2-DacB-ls; 4: G3/pLY-2-SacB-ls; 5: G3/pLY-2-AmyE-ls; 6: G3/pLY-2-SAD-ls; 7: G3/pLY-2-SDA-ls; M: 1 kb DNA ladder
Fig.4 Enzyme activity of recombinant G3/pLY-2-ls at different fermentation time Different lowercase letters indicate significant differences at P=0.05
Fig.5 Enzyme activity of recombinant bacteria with different signal peptides Different lowercase letters indicate significant differences at P=0.05
Fig.6 Enzyme activity of signal peptides in different forms Different lowercase letters indicate significant differences at P=0.05
Fig.7 SDS-PAGE validation map of signal peptide combination recombinant strain 1: G3/pLY-2-SAD-ls; 2: G3/pLY-2-SDA-ls; 3: G3/pLY-2-SA-ls; 4: G3/pLY-2-SD-ls
[1]   Srikanth R, Siddartha G, Sundhar Reddy C H S S, et al. Antioxidant and anti-inflammatory levan produced from Acetobacter xylinum NCIM2526 and its statistical optimization. Carbohydrate Polymers, 2015, 123: 8-16.
doi: 10.1016/j.carbpol.2014.12.079 pmid: 25843829
[2]   Liu Q, Yu S H, Zhang T, et al. Efficient biosynthesis of levan from sucrose by a novel levansucrase from Brenneria goodwinii. Carbohydrate Polymers, 2017, 157: 1732-1740.
doi: 10.1016/j.carbpol.2016.11.057
[3]   Dahech I, Harrabi B, Hamden K, et al. Antioxidant effect of nondigestible levan and its impact on cardiovascular disease and atherosclerosis. International Journal of Biological Macromolecules, 2013, 58: 281-286.
doi: 10.1016/j.ijbiomac.2013.04.058 pmid: 23624165
[4]   Oscarson S, Sehgelmeble F W. Chemical syntheses of inulin and levan structures. The Journal of Organic Chemistry, 2002, 67(24): 8457-8462.
doi: 10.1021/jo020341q
[5]   Esawy M A, Ahmed E F, Helmy W A, et al. Production of levansucrase from novel honey Bacillus subtilis isolates capable of producing antiviral levans. Carbohydrate Polymers, 2011, 86(2): 823-830.
doi: 10.1016/j.carbpol.2011.05.035
[6]   Kim K H, Chung C B, Kim Y H, et al. Cosmeceutical properties of levan produced by Zymomonas mobilis. International Journal of Cosmetic Science, 2006, 28(3): 231.
[7]   陆娟, 卢丽丽, 肖敏. Levan蔗糖酶及其在Levan果聚糖合成中的应用. 微生物学报, 2014, 54(6): 601-607.
[7]   Lu J, Lu L L, Xiao M. Application of levansucrase in levan synthesis-a review. Acta Microbiologica Sinica, 2014, 54(6): 601-607.
[8]   Ko H, Bae J H, Sung B H, et al. Efficient production of levan using a recombinant yeast Saccharomyces cerevisiae hypersecreting a bacterial levansucrase. Journal of Industrial Microbiology & Biotechnology, 2019, 46(11): 1611-1620.
[9]   唐煜, 陈晟, 段绪果, 等. 重组果聚糖蔗糖酶的发酵优化及应用. 食品与生物技术学报, 2019, 38(4): 97-103.
[9]   Tang Y, Chen S, Duan X G, et al. Study on fermentation optimization and application of recombinant levansucrase. Journal of Food Science and Biotechnology, 2019, 38(4): 97-103.
[10]   孙惟沁, 沐万孟, 张涛, 等. 产果聚糖蔗糖酶重组枯草芽孢杆菌的构建及表达. 食品与生物技术学报, 2019, 38(10): 79-86.
[10]   Sun W Q, Mu W M, Zhang T, et al. Construction and expression of a recombinant Bacillus subtilis producing levansucrase. Journal of Food Science and Biotechnology, 2019, 38(10): 79-86.
[11]   Tsirigotaki A, De Geyter J, Šoštarić N, et al. Protein export through the bacterial Sec pathway. Nature Reviews Microbiology, 2017, 15(1): 21-36.
doi: 10.1038/nrmicro.2016.161 pmid: 27890920
[12]   Chen J Q, Fu G, Gai Y M, et al. Combinatorial Sec pathway analysis for improved heterologous protein secretion in Bacillus subtilis: identification of bottlenecks by systematic gene overexpression. Microbial Cell Factories, 2015, 14: 92.
doi: 10.1186/s12934-015-0282-9
[13]   潘力, 陈倩琳, 王斌. 等. 一种具有双重启动子和双重分泌信号功能的组合DNA片段及其应用:中国, CN202111161871.8. 2022-01-21. https://kns.cnki.net/kcms2/article/abstract?v=kxaUMs6x7-4I2jr5WTdXti3zQ9F92xu0IES_dQYC5QiRib7Ie6CXGnT8XKcUZZ06ynewcaDSprj4EDFVzijRc0q3Jy-moXng&uniplatform=NZKPT&src=copy.
[13]   Pan L, Chen Q L, Wang B, et al. DNA fragment with functions of promoter and coding signal peptide and application of DNA fragment in production of alpha-L-arabinanase: China, CN202111161871.8. 2022-01-21.https://kns.cnki.net/kcms2/article/abstract?v=kxaUMs6x7-4I2jr5WTdXti3zQ9F92xu0IES_dQYC5QiRib7Ie6CXGnT8XKcUZZ06ynewcaDSprj4EDFVzijRc0q3Jy-moXng&uniplatform=NZKPT&src=copy.
[14]   Gao W X, Liu F H, Zhang W, et al. Mutations in genes encoding antibiotic substances increase the synthesis of poly-γ-glutamic acid in Bacillus amyloliquefaciens LL3. MicrobiologyOpen, 2017, 6(1): e00398.
doi: 10.1002/mbo3.2016.6.issue-1
[15]   Cai D, Rao Y, Zhan Y, et al. Engineering Bacillus for efficient production of heterologous protein: current progress, challenge and prospect. Journal of Applied Microbiology, 2019, 126(6): 1632-1642.
doi: 10.1111/jam.14192 pmid: 30609144
[16]   Gao W X, He Y L, Zhang F, et al. Metabolic engineering of Bacillus amyloliquefaciens LL 3 for enhanced poly‐γ‐glutamic acid synthesis. Microbial Biotechnology, 2019, 12(5): 932-945.
doi: 10.1111/mbt2.v12.5
[17]   Feng J, Quan Y F, Gu Y Y, et al. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum. Microbial Cell Factories, 2017, 16(1): 88.
doi: 10.1186/s12934-017-0704-y pmid: 28532451
[18]   Feng J, Gu Y Y, Quan Y F, et al. Recruiting a new strategy to improve levan production in Bacillus amyloliquefaciens. Scientific Reports, 2015, 5(1): 1-12.
[19]   吴庆. 解淀粉芽孢杆菌胞苷代谢途径分析与高效基因敲除系统构建的研究. 银川: 宁夏大学, 2016.
[19]   Wu Q. Analysis of cytosine metabolic pathway of Bacillus amyloliquefaciens and construction of efficient gene knockout system. Yinchuan: Ningxia University, 2016.
[20]   Liu Y H, Shi C S, Li D K, et al. Engineering a highly efficient expression system to produce BcaPRO protease in Bacillus subtilis by an optimized promoter and signal peptide. International Journal of Biological Macromolecules, 2019, 138: 903-911.
doi: 10.1016/j.ijbiomac.2019.07.175
[21]   Wu S C, Yeung J C, Duan Y J, et al. Functional production and characterization of a fibrin-specific single-chain antibody fragment from Bacillus subtilis: effects of molecular chaperones and a wall-bound protease on antibody fragment production. Applied and Environmental Microbiology, 2002, 68(7): 3261-3269.
doi: 10.1128/AEM.68.7.3261-3269.2002
[22]   Waldeck J, Meyer-Rammes H, Wieland S, et al. Targeted deletion of genes encoding extracellular enzymes in Bacillus licheniformis and the impact on the secretion capability. Journal of Biotechnology, 2007, 130(2): 124-132.
pmid: 17481763
[23]   Taylan O, Yilmaz M T, Dertli E. Partial characterization of a levan type exopolysaccharide (EPS) produced by Leuconostoc mesenteroides showing immunostimulatory and antioxidant activities. International Journal of Biological Macromolecules, 2019, 136: 436-444.
doi: S0141-8130(19)31786-6 pmid: 31201910
[24]   张钰文, 袁航, 于江悦, 等. 一株高效降解羽毛废弃物菌株的筛选及表达条件优化. 生物技术通报, 2019, 35(9): 93-98.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0370
[24]   Zhang Y W, Yuan H, Yu J Y, et al. Screening of a bacterial strain efficiently degrading feather waste and optimization of its expression condition. Biotechnology Bulletin, 2019, 35(9): 93-98.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0370
[25]   Mathiesen G, Sveen A, Brurberg M B, et al. Genome-wide analysis of signal peptide functionality in Lactobacillus plantarum WCFS1. BMC Genomics, 2009, 10: 425.
doi: 10.1186/1471-2164-10-425 pmid: 19744343
[1] WANG Rong-xiang,SONG Jia,SUN Bo,YAN Xue,ZHANG Wan-zhong,ZHAO Chen. Research Progress of Function and Biosynthesis of Coumarins[J]. China Biotechnology, 2022, 42(12): 79-90.
[2] Qiong WU,Xin ZHAO,Yu-yao DU,Shu-hong MAO. Co-expression and Functional Analysis of Cytochrome P450 Reductase and CYP17[J]. China Biotechnology, 2022, 42(10): 1-8.
[3] HE Ruo-yu,LIN Fu-yu,GAO Xiang-dong,LIU Jin-yi. Research and Application Progress of Signal Peptides in Escherichia coli Secretion Systems[J]. China Biotechnology, 2021, 41(5): 87-93.
[4] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[5] WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378[J]. China Biotechnology, 2020, 40(5): 22-29.
[6] AN Ming-hui,TIAN Wen,HAN Xiao-xu,SHANG Hong. Construction and Phenotypic Analyses of Recombinant Lactobacillus Expressing Single-Chain Antibody of HIV[J]. China Biotechnology, 2019, 39(10): 1-8.
[7] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.
[8] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[9] Nan WANG,Lv-hua JIN,Ling ZHANG,Rong LIN,Hai-lin YANG. The Effect of Signal Peptides on the Expression of Leucine Dehydrogenase and Enzymatic Properties in Bacillus subtilis[J]. China Biotechnology, 2018, 38(4): 46-53.
[10] ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin. To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research[J]. China Biotechnology, 2018, 38(12): 21-31.
[11] LI Bo, LIANG Nan, LIU Duo, LIU Hong, WANG Ying, XIAO Wen-hai, YAO Ming-dong, YUAN Ying-jin. Metabolic Engineering of Saccharomyces cerevisiae for Production of 8-Dimenthylally Naringenin[J]. China Biotechnology, 2017, 37(9): 71-81.
[12] YANG Qing, WANG Bin, WANG Ya-wei, ZHANG Hua-shan, XIONG Hai-rong, ZHANG Li. Comparison of Signal Peptides for Two Hemicellulase Secretory Expression[J]. China Biotechnology, 2017, 37(8): 15-22.
[13] LI Dan, HUANG He. Heterologous Expression of Nanobodies:a Recent Progress[J]. China Biotechnology, 2017, 37(8): 84-95.
[14] YU Xiao-chun, MA Shi-liang. Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression[J]. China Biotechnology, 2016, 36(9): 94-100.
[15] CHEN Long-guan, QIN Jin-hong, HUANG Yun-na, MAI Jun-xin, XIE Qiu-ling. Optimized Signal Peptides Sequences for the Development of High Expressing McAbs[J]. China Biotechnology, 2016, 36(3): 77-81.