Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (2/3): 43-53    DOI: 10.13523/j.cb.2209028
    
Polymeric Nanomaterials Used in Oral Insulin Delivery Systems
MA Pin-pin,XIONG Xiang-yuan**()
College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
Download: HTML   PDF(2598KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Subcutaneous insulin is the most effective way to control blood sugar levels and plays a crucial role in the treatment of patients with type I and advanced type II diabetes. However, frequent subcutaneous injections bring great pain to patients, so for the treatment of diabetes, oral therapy is preferred at present. Oral insulin can mimic physiological insulin secretion and provide more comprehensive regulation of hepatic glucose metabolism, but the development of oral insulin administration is greatly hampered by gastrointestinal malabsorption. The rapid development nanoscale drug delivery systems (NDDS) of has increased the possibility of oral insulin. Polymeric nanomaterials are important carrier materials in NDDS, which have been widely used to promote oral insulin absorption. They have the advantages of biodegradability, biocompatibility and storage stability, and their molecular chain is long and the structure is easy to be changed, modified and processed. The polymeric nanomaterials can protect the encapsulated insulin from the effects of acid denaturation and enzymatic degradation, promote the uptake of insulin by cells, and thus improve the bioavailability of insulin. This review discusses the main physiological obstacles to oral insulin and summarizes the research progress of polymer nanomaterials for oral insulin delivery in recent years.



Key wordsDiabetes mellitus      Polymeric nanoparticles      Drug delivery systems      Oral insulin     
Received: 14 September 2022      Published: 31 March 2023
ZTFLH:  Q819  
Corresponding Authors: **Xiang-yuan XIONG     E-mail: xy.xiong@qq.com
Cite this article:

MA Pin-pin, XIONG Xiang-yuan. Polymeric Nanomaterials Used in Oral Insulin Delivery Systems. China Biotechnology, 2023, 43(2/3): 43-53.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2209028     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I2/3/43

Fig.1 Structure and hypoglycemic effect of embedded insulin nanovesicles (a),(b) The possible schematic microstructure of FA-P85-PLGA and PLGA-P85-PLGA polymersomes (c)Blood glucose level versus time profiles oftest diabeticrats following the administration of different insulin formulations (d) Plasma insulin level versus time profiles of test diabetic rats following the administration of different insulin formulations[26]
Fig.2 Schematic illustration of loading and release of insulin by the PEG-b-P(Asp-co-AspPBA)/ P(Asp-co-AspGA-co-AspNTA complex micelles
Fig.3 Glu-APD protects insulin and stabilizes drug release in an environment that mimics the gastrointestinal tract (a) Glutamic acid conjugated amphiphilic dendrimer (Glu-APD) (b) Cumulative amount of insulin released from Ins-P NPs and Ins-Glu-APD NPs in pH 1.2 and 6.8 (c) The percentage of insulin undegraded at different time points in pH 6.8 with trypsin[36]
Fig.4 Schematic concept of hydrogels-CINs composite injection and the release of insulin
Fig.5 Intestinal amylase led to the degradation of the polymeric networks in the hydrogel
类型 纳米材料载体 策略 克服屏障
聚合物囊泡 FA-P85-PLGA[26] 叶酸受体介导的靶向聚合体的内吞作用 胃酸屏障
mPEG-PolyMet[27] 模拟葡萄糖应答性分泌 胃酸屏障
PS@ins/GOx[28] 多水平血糖自我调节功能的葡萄糖和pH双响应型胰岛素给药 胃酸屏障
聚合物胶束 NCs[30] 模拟纳米分子伴侣 胃酸屏障
DSPE-PCB[31] 模拟病毒的两性离子表面、甜菜碱侧链和超低临界胶束浓度 肠道屏障
CM[32] 葡萄糖响应性 胃酸屏障
树枝状聚合物 G2-AC6[34] PAMAM吸收促进剂 肠道屏障
ICPD[35] PPI树枝状大分子的聚乙二醇化 胃酸屏障
Glu-APD[36] 树枝状低聚肽 肠道屏障
纳米球 CIN[39] 壳聚糖-胰岛素电喷雾纳米球 胃酸屏障
PLGA纳米粒[40] 在酸性介质中对胰岛素的释放具有保护作用 胃酸屏障
INS-TMC-PLGA[41] TCM受体介导的靶向聚合体PLGA纳米粒的内吞作用 胃酸屏障、肠道屏障
纳米凝胶 CS/INS/HS[9] pH-淀粉酶响应型水凝胶 胃酸屏障
InF12-Tre2[44] pH敏感型纳米凝胶 胃酸屏障
P(NIPAM-co-Dex-co-
DDOPBA)[45]
葡萄糖敏感纳米凝胶 胃酸屏障
Table 1 Insulin delivery strategies from polymeric nanomaterials
[1]   International Diabetes Federation. IDF Diabetes Atlas, 10th ed. [2022-04-21]. https://www.diabetesatlas.org.
[2]   Despins L A, Wakefield B J. Making sense of blood glucose data and self-management in individuals with type 2 diabetes mellitus: a qualitative study. Journal of Clinical Nursing, 2020, 29(13-14): 2572-2588.
doi: 10.1111/jocn.15280 pmid: 32279366
[3]   Suplotova L A, Sudnitsyna A S, Romanova N V. Analysis of the quality of life of patients with type 1 diabetes mellitus in real clinical practice who received insulin degludec. Meditsinskiy Sovet, 2021(14): 96-103.
[4]   Chen G Y, Kang W R, Li W Q, et al. Oral delivery of protein and peptide drugs: from non-specific formulation approaches to intestinal cell targeting strategies. Theranostics, 2022, 12(3): 1419-1439.
doi: 10.7150/thno.61747 pmid: 35154498
[5]   Park H, Otte A, Park K. Evolution of drug delivery systems: from 1950 to 2020 and beyond. Journal of Controlled Release, 2022, 342: 53-65.
doi: 10.1016/j.jconrel.2021.12.030
[6]   Cui Z X, Qin L, Guo S, et al. Design of biotin decorated enterocyte targeting muco-inert nano complexes for enhanced oral insulin delivery. Carbohydrate Polymers, 2021, 261: 117873.
doi: 10.1016/j.carbpol.2021.117873
[7]   Jiang W X, Chen L, Guo X, et al. Combating multidrug resistance and metastasis of breast cancer by endoplasmic reticulum stress and cell-nucleus penetration enhanced immunochemotherapy. Theranostics, 2022, 12(6): 2987-3006.
doi: 10.7150/thno.71693 pmid: 35401832
[8]   Cheng H B, Cui Z X, Guo S, et al. Mucoadhesive versus mucopenetrating nanoparticles for oral delivery of insulin. Acta Biomaterialia, 2021, 135: 506-519.
doi: 10.1016/j.actbio.2021.08.046 pmid: 34487859
[9]   Liu L, Zhang Y, Yu S J, et al. Dual stimuli-responsive nanoparticle-incorporated hydrogels as an oral insulin carrier for intestine-targeted delivery and enhanced paracellular permeation. ACS Biomaterials Science & Engineering, 2018, 4(8): 2889-2902.
[10]   Banerjee A, Ibsen K, Brown T, et al. Ionic liquids for oral insulin delivery. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(28): 7296-7301.
[11]   Seyam S, Nordin N A, Alfatama M. Recent progress of chitosan and chitosan derivatives-based nanoparticles: pharmaceutical perspectives of oral insulin delivery. Pharmaceuticals (Basel, Switzerland), 2020, 13(10): 307.
[12]   Xu Z Y, Chen L, Duan X Y, et al. Microparticles based on alginate/chitosan/casein three-dimensional system for oral insulin delivery. Polymers for Advanced Technologies, 2021, 32(11): 4352-4361.
doi: 10.1002/pat.v32.11
[13]   Fu Y, Sun Y X, Chen M, et al. Glycopolymer nanoparticles with on-demand glucose-responsive insulin delivery and low-hypoglycemia risks for type 1 diabetic treatment. Biomacromolecules, 2022, 23(3): 1251-1258.
doi: 10.1021/acs.biomac.1c01496
[14]   Zhou Y H, Liu L, Cao Y, et al. A nanocomposite vehicle based on metal-organic framework nanoparticle incorporated biodegradable microspheres for enhanced oral insulin delivery. ACS Applied Materials & Interfaces, 2020, 12(20): 22581-22592.
[15]   Kumari Y, Singh S K, Kumar R, et al. Modified apple polysaccharide capped gold nanoparticles for oral delivery of insulin. International Journal of Biological Macromolecules, 2020, 149: 976-988.
doi: S0141-8130(19)39044-0 pmid: 32018009
[16]   Huang Q, Yu H J, Wang L, et al. Synthesis and testing of polymer grafted mesoporous silica as glucose-responsive insulin release drug delivery systems. European Polymer Journal, 2021, 157: 110651.
doi: 10.1016/j.eurpolymj.2021.110651
[17]   Pauletti G M, Gangwar S, Knipp G T, et al. Structural requirements for intestinal absorption of peptide drugs. Journal of Controlled Release, 1996, 41(1-2): 3-17.
doi: 10.1016/0168-3659(96)01352-1
[18]   Evans D F, Pye G, Bramley R, et al. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut, 1988, 29(8): 1035-1041.
pmid: 3410329
[19]   Saeed S, Irfan M, Naz S, et al. Routes and barriers associated with protein and peptide drug delivery system. JPMA the Journal of the Pakistan Medical Association, 2021, 71(8): 2032-2039.
[20]   Cheng H, Leblond C P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. III. Entero-endocrine cells. The American Journal of Anatomy, 1974, 141(4): 503-519.
doi: 10.1002/(ISSN)1553-0795
[21]   Sonia T A, Sharma C P. An overview of natural polymers for oral insulin delivery. Drug Discovery Today, 2012, 17(13-14): 784-792.
doi: 10.1016/j.drudis.2012.03.019 pmid: 22521664
[22]   Li S Y, Qin T T, Chen T T, et al. Poly(vinyl alcohol)/poly(hydroxypropyl methacrylate-co-methacrylic acid) as pH-sensitive semi-IPN hydrogels for oral insulin delivery: preparation and characterization. Iranian Polymer Journal, 2021, 30(4): 343-353.
doi: 10.1007/s13726-020-00893-7
[23]   Volpatti L R, Matranga M A, Cortinas A B, et al. Glucose-responsive nanoparticles for rapid and extended self-regulated insulin delivery. ACS Nano, 2020, 14(1): 488-497.
doi: 10.1021/acsnano.9b06395 pmid: 31765558
[24]   Xi Z Y, Ahmad E, Zhang W, et al. Dual-modified nanoparticles overcome sequential absorption barriers for oral insulin delivery. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2022, 342: 1-13.
doi: 10.1016/j.jconrel.2021.11.045
[25]   Xiong X Y, Li Y P, Li Z L, et al. Vesicles from Pluronic/poly(lactic acid) block copolymers as new carriers for oral insulin delivery. Journal of Controlled Release, 2007, 120(1-2): 11-17.
pmid: 17509718
[26]   Xie S, Gong Y C, Xiong X Y, et al. Targeted folate-conjugated pluronic P85/poly(lactide-co-glycolide) polymersome for the oral delivery of insulin. Nanomedicine (London, England), 2018, 13(19): 2527-2544.
doi: 10.2217/nnm-2017-0372
[27]   Wang A H, Fan W W, Yang T T, et al. Liver-target and glucose-responsive polymersomes toward mimicking endogenous insulin secretion with improved hepatic glucose utilization. Advanced Functional Materials, 2020, 30(13): 1910168.
doi: 10.1002/adfm.v30.13
[28]   Zhou D X, Li S Y, Fei Z X, et al. Glucose and pH dual-responsive polymersomes with multilevel self-regulation of blood glucose for insulin delivery. Biomacromolecules, 2021, 22(9): 3971-3979.
doi: 10.1021/acs.biomac.1c00772 pmid: 34423981
[29]   Lee S W, Kim Y M, Cho C H, et al. An open-label, randomized, parallel, phase II trial to evaluate the efficacy and safety of a cremophor-free polymeric micelle formulation of paclitaxel as first-line treatment for ovarian cancer: a Korean gynecologic oncology group study (KGOG-3021). Cancer Research and Treatment, 2018, 50(1): 195-203.
doi: 10.4143/crt.2016.376
[30]   Li C, Liu X Y, Zhang Y L, et al. Nanochaperones mediated delivery of insulin. Nano Letters, 2020, 20(3): 1755-1765.
doi: 10.1021/acs.nanolett.9b04966 pmid: 32069419
[31]   Han X F, Lu Y, Xie J B, et al. Zwitterionic micelles efficiently deliver oral insulin without opening tight junctions. Nature Nanotechnology, 2020, 15(7): 605-614.
doi: 10.1038/s41565-020-0693-6 pmid: 32483319
[32]   Li C, Wu G, Ma R J, et al. Nitrilotriacetic acid (NTA) and phenylboronic acid (PBA) functionalized nanogels for efficient encapsulation and controlled release of insulin. ACS Biomaterials Science & Engineering, 2018, 4(6): 2007-2017.
[33]   Cao S J, Xu S, Wang H M, et al. Nanoparticles: oral delivery for protein and peptide drugs. AAPS PharmSciTech, 2019, 20(5): 190.
doi: 10.1208/s12249-019-1325-z
[34]   Yan C Y, Gu J W, Lv Y G, et al. Caproyl-modified G2 PAMAM dendrimer (G2-AC) nano complexes increases the pulmonary absorption of insulin. AAPS PharmSciTech, 2019, 20(7): 298.
doi: 10.1208/s12249-019-1505-x
[35]   Parashar A K, Patel P, Gupta A K, et al. Synthesis, characterization and in vivo Evaluation of PEGylated PPI dendrimer for safe and prolonged delivery of insulin. Drug Delivery Letters, 2019, 9(3): 248-263.
doi: 10.2174/2210303109666190401231920
[36]   Bai Y L, Zhou R, Wu L, et al. Nanoparticles with surface features of dendritic oligopeptides as potential oral drug delivery systems. Journal of Materials Chemistry B, 2020, 8(13): 2636-2649.
doi: 10.1039/c9tb02860a pmid: 32129375
[37]   Dan N, Samanta K, Almoazen H. An update on pharmaceutical strategies for oral delivery of therapeutic peptides and proteins in adults and pediatrics. Children (Basel, Switzerland), 2020, 7(12): 307.
[38]   Bednarikova Z, Antal I, Kubovcikova M, et al. Modified polymer nanospheres:characterization and their anti-amyloid activity to insulin amyloid aggregation. Journal of Magnetism and Magnetic Materials, 2021, 521: 167527.
doi: 10.1016/j.jmmm.2020.167527
[39]   Trinh T A, Le T M D, Ho H G V, et al. A novel injectable pH-temperature sensitive hydrogel containing chitosan-insulin electrosprayed nanosphere composite for an insulin delivery system in type I diabetes treatment. Biomaterials Science, 2020, 8(14): 3830-3843.
doi: 10.1039/d0bm00634c pmid: 32538381
[40]   Jaradat A, Macedo M H, Sousa F, et al. Prediction of the enhanced insulin absorption across a triple co-cultured intestinal model using mucus penetrating PLGA nanoparticles. International Journal of Pharmaceutics, 2020, 585: 119516.
doi: 10.1016/j.ijpharm.2020.119516
[41]   Fang Y, Wang Q, Lin X J, et al. Gastrointestinal responsive polymeric nanoparticles for oral delivery of insulin: optimized preparation, characterization, and in vivo evaluation. Journal of Pharmaceutical Sciences, 2019, 108(9): 2994-3002.
doi: S0022-3549(19)30253-9 pmid: 31047941
[42]   Gabriel T, Belete A, Hause G, et al. Nanocellulose-based nanogels for sustained drug delivery: preparation, characterization and in vitro evaluation. Journal of Drug Delivery Science and Technology, 2022, 75: 103665.
doi: 10.1016/j.jddst.2022.103665
[43]   Ahmed S, Alhareth K, Mignet N. Advancement in nanogel formulations provides controlled drug release. International Journal of Pharmaceutics, 2020, 584: 119435.
doi: 10.1016/j.ijpharm.2020.119435
[44]   Mudassir J, Darwis Y, Muhamad S, et al. Self-assembled insulin and nanogels polyelectrolyte complex (Ins/NGs-PEC) for oral insulin delivery: characterization, lyophilization and in-vivo evaluation. International Journal of Nanomedicine, 2019, 14: 4895-4909.
doi: 10.2147/IJN
[45]   Elshaarani T, Yu H J, Wang L, et al. Dextran-crosslinked glucose responsive nanogels with a self-regulated insulin release at physiological conditions. European Polymer Journal, 2020, 125: 109505.
doi: 10.1016/j.eurpolymj.2020.109505
[1] GAN Qiao, MENG Qing-xiong. Intestinal Microflora and Its Metabolites in Relation to the Pathogenesis and Intervention of T2DM[J]. China Biotechnology, 2022, 42(3): 62-71.
[2] CHEN Fei,WANG Xiao-bing,XU Zeng-hui,QIAN Qi-jun. Molecular Mechanism and Clinical Research Progress of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus[J]. China Biotechnology, 2020, 40(7): 59-69.
[3] Qiu-xia YAN,Yi MA,An HONG. Research Progress of Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) as a New Potential Therapeutic Peptide in Diabetes and Its Complications[J]. China Biotechnology, 2018, 38(1): 62-68.
[4] SUN Yi-ping, WANG Yue, JIN Zhen, WANG Xiao-yan, SUN Lei, ZHANG Xuan, FENG Chong, ZHOU Xiao-hua. Establishment and Phenotype Analysis of SHBG Knockout Mouse Model[J]. China Biotechnology, 2017, 37(8): 39-45.
[5] YUAN Feng-shan, WANG Chang-jun, DONG Fei, ZHAO Yu-hang. The Therapeutic Effect of the Induced Insulin Secreting Cells on Rat Diabetes[J]. China Biotechnology, 2011, 31(5): 94-98.
[6] . The Therapeutic Effect of the Induced Insulin Secreting Cells on Rat Diabetes[J]. China Biotechnology, 2011, 31(05): 0-0.
[7] LIU Yan-jie, JI Hong, LIN Lu-xia, ZANG Xue-zhang, SONG Chang-zheng, RONG Hai-qin. Solid Phase Peptide Synthesis and Analysis for Exendin-4[J]. China Biotechnology, 2011, 31(02): 69-73.
[8] SONG Wen-Cheng, JIN Meng-Fei, LI Dong-Jing, DIAO Li-Fen, ZHANG Hong-Dan, HUANG Jing, TUN Zi-Rong. Cloning, Expression, Purification and Its Biological Activity Study of a Novel GIP Analog[J]. China Biotechnology, 2010, 30(06): 38-43.
[9] HONG Xiang- Ma-Meng-Gao- Feng-Shen- Tun-Xie-Lin- Zhang-Xu-Ying- Jin-Meng-Fei- Huang-Jing- Tun-Zi-Rong. Expression and Activity of Recombinant Human Glutamate Decarboxylase 65[J]. China Biotechnology, 2009, 29(04): 12-16.
[10] . Glucagon-Like PeptideⅠand targeted differentiation of stem cells[J]. China Biotechnology, 2007, 27(4): 115-119.
[11] . Inducing of insulin producing like cell with bone marrow-derived mesenchymal stem cell[J]. China Biotechnology, 2006, 26(0): 230-233.