Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (3): 62-71    DOI: 10.13523/j.cb.2108066
    
Intestinal Microflora and Its Metabolites in Relation to the Pathogenesis and Intervention of T2DM
GAN Qiao,MENG Qing-xiong**()
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China
Download: HTML   PDF(2828KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease caused by insufficient insulin secretion or insulin resistance. The rapid increase in the number of patients with T2DM makes the treatment and prevention of T2DM an urgent problem in the world. With the advancement of microbiome technology, the research on the intestinal flora, its metabolites and the T2DM has gradually deepened. Perhaps the intestinal flora can be used as a target for the treatment and prevention of T2DM. The potential mechanism of intestinal flora acting on T2DM is reviewed. It mainly participates in the inflammatory response in the body, increasing the production of intestinal short-chain fatty acids, regulating the metabolism of intestinal bile acids and their product distribution, and ajusting the metabolism of branched-chain amino acids. Currently, drugs for T2DM may have some side effects. Measures based on the intestinal flora to intervene in T2DM are relatively safe and harmless. Long-term intake of a strictly controlled diet with a specific structure can be used to control blood sugar or increase the long-term intake of probiotics. It can also affect the ecological structure of the intestinal flora through oral administration. Sugar drugs (metformin and acarbose) effectively regulate blood sugar levels. The potential mechanism of T2DM induced by the intestinal flora and its metabolites is reviewed, and measures for the intervention of T2DM based on the intestinal flora are also discussed. In addition, new methods for the treatment of T2DM from a new perspective of the intestinal flora are explored, which may provide a thorough treatment of T2DM in the future.



Key wordsIntestinal microflora      Type 2 diabetes mellitus (T2DM)      Metabolite      Metformin     
Received: 27 August 2021      Published: 07 April 2022
ZTFLH:  R587.1R378.2  
Corresponding Authors: Qing-xiong MENG     E-mail: qxmeng@sina.com
Cite this article:

GAN Qiao, MENG Qing-xiong. Intestinal Microflora and Its Metabolites in Relation to the Pathogenesis and Intervention of T2DM. China Biotechnology, 2022, 42(3): 62-71.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2108066     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I3/62

Fig.1 Transport of glucose and GM metabolites in healthy people and T2DM patients
Fig.2 Pathway that GM and its metabolites regulate glucose metabolism
Fig.3 Bacteroides fragilis-GUDCA-gut FXR axis
[1]   中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版). 中国实用内科杂志, 2018, 38(4):292-344.
[1]   Chinese Diabetes Society. Guidelines for the prevention and control of type 2 diabetes in China(2017 Edition). Chinese Journal of Practical Internal Medicine, 2018, 38(4):292-344.
[2]   Chen L, Magliano D J, Zimmet P Z. The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives. Nature Reviews Endocrinology, 2012, 8(4):228-236.
doi: 10.1038/nrendo.2011.183
[3]   Viigimaa M, Sachinidis A, Toumpourleka M, et al. Macrovascular complications of type 2 diabetes mellitus. Current Vascular Pharmacology, 2020, 18(2):110-116.
doi: 10.2174/1570161117666190405165151 pmid: 30961498
[4]   Khan N U, Lin J, Liu X K, et al. Insights into predicting diabetic nephropathy using urinary biomarkers. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2020, 1868(10):140475.
doi: 10.1016/j.bbapap.2020.140475
[5]   Amaefule C E, Sasitharan A, Kalra P, et al. The accuracy of haemoglobin A1c as a screening and diagnostic test for gestational diabetes: a systematic review and meta-analysis of test accuracy studies. Current Opinion in Obstetrics & Gynecology, 2020, 32(5):322-334.
[6]   Luca M, Di Mauro M, Di Mauro M, et al. Gut microbiota in Alzheimer’s disease, depression, and type 2 diabetes mellitus: the role of oxidative stress. Oxidative Medicine and Cellular Longevity, 2019, 2019:4730539.
[7]   Caesar R. Pharmacologic and nonpharmacologic therapies for the gut microbiota in type 2 diabetes. Canadian Journal of Diabetes, 2019, 43(3):224-231.
doi: 10.1016/j.jcjd.2019.01.007
[8]   Morais L H, Schreiber H L, Mazmanian S K. The gut microbiota-brain axis in behaviour and brain disorders. Nature Reviews Microbiology, 2021, 19(4):241-255.
doi: 10.1038/s41579-020-00460-0 pmid: 33093662
[9]   Wang R, Tang R Q, Li B, et al. Gut microbiome, liver immunology, and liver diseases. Cellular & Molecular Immunology, 2021, 18(1):4-17.
[10]   Wang Z Y, Zeng M M, Wang Z J, et al. Dietary polyphenols to combat nonalcoholic fatty liver disease via the gut-brain-liver axis: a review of possible mechanisms. Journal of Agricultural and Food Chemistry, 2021, 69(12):3585-3600.
doi: 10.1021/acs.jafc.1c00751
[11]   Fried S, Wemelle E, Cani P D, et al. Interactions between the microbiota and enteric nervous system during gut-brain disorders. Neuropharmacology, 2021, 197:108721.
doi: 10.1016/j.neuropharm.2021.108721
[12]   Wang S Z, Yu Y J, Adeli K. Role of gut microbiota in neuroendocrine regulation of carbohydrate and lipid metabolism via the microbiota-gut-brain-liver axis. Microorganisms, 2020, 8(4):527.
doi: 10.3390/microorganisms8040527
[13]   Pagliari D, Saviano A, Newton E E, et al. Gut microbiota-immune system crosstalk and pancreatic disorders. Mediators of Inflammation, 2018, 2018:7946431.
[14]   Maranta F, Cianfanelli L, Cianflone D. Glycaemic control and vascular complications in diabetes mellitus type 2. Advances in Experimental Medicine and Biology, 2021, 1307:129-152.
[15]   Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. International Journal of Molecular Sciences, 2020, 21(17):6275.
doi: 10.3390/ijms21176275
[16]   Merino B, Fernández-Díaz C M, Cózar-Castellano I, et al. Intestinal fructose and glucose metabolism in health and disease. Nutrients, 2019, 12(1):94.
doi: 10.3390/nu12010094
[17]   Nilsson E, Matte A, Perfilyev A, et al. Epigenetic alterations in human liver from subjects with type 2 diabetes in parallel with reduced folate levels. The Journal of Clinical Endocrinology & Metabolism, 2015, 100(11):E1491-E1501.
doi: 10.1210/jc.2015-3204
[18]   Mazoochian L, Mohammad Sadeghi H M, Pourfarzam M. The effect of FADS2 gene rs174583 polymorphism on desaturase activities, fatty acid profile, insulin resistance, biochemical indices, and incidence of type 2 diabetes. Journal of Research in Medical Sciences, 2018, 23:47.
doi: 10.4103/jrms.JRMS_961_17 pmid: 29937909
[19]   Fu S Y, Meng Y H, Zhang W L, et al. Transcriptomic responses of skeletal muscle to acute exercise in diabetic goto-kakizaki rats. Frontiers in Physiology, 2019, 10:872.
doi: 10.3389/fphys.2019.00872
[20]   Volkov P, Bacos K, Ofori J K, et al. Whole-genome bisulfite sequencing of human pancreatic islets reveals novel differentially methylated regions in type 2 diabetes pathogenesis. Diabetes, 2017, 66(4):1074-1085.
doi: 10.2337/db16-0996 pmid: 28052964
[21]   Taneera J, Fadista J, Ahlqvist E, et al. Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. Molecular and Cellular Endocrinology, 2013, 375(1-2):35-42.
doi: 10.1016/j.mce.2013.05.003 pmid: 23707792
[22]   García-Chapa E G, Leal-Ugarte E, Peralta-Leal V, et al. Genetic epidemiology of type 2 diabetes in Mexican mestizos. BioMed Research International, 2017, 2017:3937893.
[23]   Engwa G A, Nwalo F N, Chikezie C C, et al. Possible association between ABCC8 C49620T polymorphism and type 2 diabetes in a Nigerian population. BMC Medical Genetics, 2018, 19(1):78.
doi: 10.1186/s12881-018-0601-1
[24]   Ling C, Rönn T. Epigenetics in human obesity and type 2 diabetes. Cell Metabolism, 2019, 29(5):1028-1044.
doi: 10.1016/j.cmet.2019.03.009
[25]   Koh A, Molinaro A, Ståhlman M, et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell, 2018, 175(4):947-961, e17.
doi: 10.1016/j.cell.2018.09.055
[26]   Pedersen H K, Gudmundsdottir V, Nielsen H B, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature, 2016, 535(7612):376-381.
doi: 10.1038/nature18646
[27]   Ebrahimzadeh Leylabadlo H, Sanaie S, Sadeghpour Heravi F, et al. From role of gut microbiota to microbial-based therapies in type 2-diabetes. Infection,Genetics and Evolution, 2020, 81:104268.
doi: 10.1016/j.meegid.2020.104268
[28]   Egshatyan L, Kashtanova D, Popenko A, et al. Gut microbiota and diet in patients with different glucose tolerance. Endocrine Connections, 2016, 5(1):1-9.
doi: 10.1530/EC-15-0094 pmid: 26555712
[29]   Wu H, Esteve E, Tremaroli V, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nature Medicine, 2017, 23(7):850-858.
doi: 10.1038/nm.4345
[30]   Amyot J, Semache M, Ferdaoussi M, et al. Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via Toll-Like Receptor-4 and NF-κB signalling. PLoS One, 2012, 7(4):e36200.
doi: 10.1371/journal.pone.0036200
[31]   Cani P D, Possemiers S, van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut, 2009, 58(8):1091-1103.
doi: 10.1136/gut.2008.165886
[32]   Li B, Fang J, Zuo Z C, et al. Activation of porcine alveolar macrophages by Actinobacillus pleuropneumoniae lipopolysaccharide via the toll-like receptor 4/NF-κB-mediated pathway. Infection and Immunity, 2018, 86(3):e00642-17.
[33]   Dey P. Gut microbiota in phytopharmacology: a comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions. Pharmacological Research, 2019, 147:104367.
doi: 10.1016/j.phrs.2019.104367
[34]   Chassaing B, Raja S M, Lewis J D, et al. Colonic microbiota encroachment correlates with dysglycemia in humans. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4(2):205-221.
doi: 10.1016/j.jcmgh.2017.04.001 pmid: 28649593
[35]   Guo Y, Zou J, Xu X F, et al. Short-chain fatty acids combined with intronic DNA methylation of HIF3A: potential predictors for diabetic cardiomyopathy. Clinical Nutrition (Edinburgh, Scotland), 2021, 40(6):3708-3717.
doi: 10.1016/j.clnu.2021.04.007
[36]   Vallianou N G, Stratigou T, Tsagarakis S. Metformin and gut microbiota: their interactions and their impact on diabetes. Hormones(Athens), 2019, 18(2):141-144.
[37]   Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Reviews in Endocrine and Metabolic Disorders, 2019, 20(4):461-472.
doi: 10.1007/s11154-019-09512-0 pmid: 31707624
[38]   Zhao L P, Zhang F, Ding X Y, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 2018, 359(6380):1151-1156.
doi: 10.1126/science.aao5774
[39]   Tirosh A, Calay E S, Tuncman G, et al. The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. Science Translational Medicine, 2019, 11(489): eaav0120.
[40]   Perry R J, Peng L, Barry N A, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature, 2016, 534(7606):213-217.
doi: 10.1038/nature18309
[41]   Wu L W, Feng J, Li J J, et al. The gut microbiome-bile acid axis in hepatocarcinogenesis. Biomedicine & Pharmacotherapy, 2021, 133:111036.
doi: 10.1016/j.biopha.2020.111036
[42]   Yehualashet A S, Yikna B B. Microbial ecosystem in diabetes mellitus: consideration of the gastrointestinal system. Diabetes, Metabolic Syndrome and Obesity, 2021, 14:1841-1854.
[43]   Fiorucci S, Distrutti E. Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends in Molecular Medicine, 2015, 21(11):702-714.
doi: S1471-4914(15)00175-6 pmid: 26481828
[44]   Ramírez-Pérez O, Cruz-Ramón V, Chinchilla-López P, et al. The role of the gut microbiota in bile acid metabolism. Annals of Hepatology, 2017, 16(Suppl. 1: s3-105.):15-20.
doi: 10.5604/01.3001.0010.5494 pmid: 29080339
[45]   Zheng X J, Chen T L, Jiang R Q, et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metabolism, 2021, 33(4):791-803, e7.
doi: 10.1016/j.cmet.2020.11.017
[46]   Kuang J L, Zheng X J, Huang F J, et al. Anti-adipogenic effect of theabrownin is mediated by bile acid alternative synthesis via gut microbiota remodeling. Metabolites, 2020, 10(11):475.
doi: 10.3390/metabo10110475
[47]   Zhang B, Chen Y, Shi X L, et al. Regulation of branched-chain amino acid metabolism by hypoxia-inducible factor in glioblastoma. Cellular and Molecular Life Sciences: CMLS, 2021, 78(1):195-206.
doi: 10.1007/s00018-020-03483-1
[48]   Tian J, Liu C, Zheng X, et al. Porphyromonas gingivalis induces insulin resistance by increasing BCAA levels in mice. Journal of Dental Research, 2020, 99(7):839-846.
doi: 10.1177/0022034520911037 pmid: 32176550
[49]   Eslami M, Bahar A, Hemati M, et al. Dietary pattern, colonic microbiota and immunometabolism interaction: new frontiers for diabetes mellitus and related disorders. Diabetic Medicine: a journal of the British Diabetic Association, 2021, 38(2):e14415.
[50]   Allin K H, Nielsen T, Pedersen O. Mechanisms in endocrinology: gut microbiota in patients with type 2 diabetes mellitus. European Journal of Endocrinology, 2015, 172(4):R167-R177.
doi: 10.1530/EJE-14-0874
[51]   Saad M J A, Santos A, Prada P O. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology (Bethesda, Md), 2016, 31(4):283-293.
[52]   Fassarella M, Blaak E E, Penders J, et al. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health. Gut, 2021, 70(3):595-605.
doi: 10.1136/gutjnl-2020-321747 pmid: 33051190
[53]   Li X X, Zhang X X, Zhang R, et al. Gut modulation based anti-diabetic effects of carboxymethylated wheat bran dietary fiber in high-fat diet/streptozotocin-induced diabetic mice and their potential mechanisms. Food and Chemical Toxicology, 2021, 152:112235.
doi: 10.1016/j.fct.2021.112235
[54]   Kovatcheva-Datchary P, Nilsson A, Akrami R, et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metabolism, 2015, 22(6):971-982.
doi: 10.1016/j.cmet.2015.10.001 pmid: 26552345
[55]   Neinast M, Murashige D, Arany Z. Branched chain amino acids. Annual Review of Physiology, 2019, 81:139-164.
doi: 10.1146/physiol.2019.81.issue-1
[56]   Cummings N E, Williams E M, Kasza I, et al. Restoration of metabolic health by decreased consumption of branched-chain amino acids. The Journal of Physiology, 2018, 596(4):623-645.
doi: 10.1113/JP275075 pmid: 29266268
[57]   Liu R X, Hong J, Xu X Q, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nature Medicine, 2017, 23(7):859-868.
doi: 10.1038/nm.4358
[58]   Tiderencel K A, Hutcheon D A, Ziegler J. Probiotics for the treatment of type 2 diabetes: a review of randomized controlled trials. Diabetes/Metabolism Research and Reviews, 2020, 36(1):e3213.
[59]   Salgaço M K, Oliveira L G S, Costa G N, et al. Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus. Applied Microbiology and Biotechnology, 2019, 103(23-24):9229-9238.
doi: 10.1007/s00253-019-10156-y pmid: 31664483
[60]   Rena G, Hardie D G, Pearson E R. The mechanisms of action of metformin. Diabetologia, 2017, 60(9):1577-1585.
doi: 10.1007/s00125-017-4342-z
[61]   Duca F A, Côté C D, Rasmussen B A, et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nature Medicine, 2015, 21(5):506-511.
doi: 10.1038/nm.3787
[62]   Maniar K, Moideen A, Mittal A, et al. A story of metformin-butyrate synergism to control various pathological conditions as a consequence of gut microbiome modification: genesis of a wonder drug? Pharmacological Research, 2017, 117:103-128.
doi: S1043-6618(16)30954-9 pmid: 27939359
[63]   Sun L L, Xie C, Wang G, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nature Medicine, 2018, 24(12):1919-1929.
doi: 10.1038/s41591-018-0222-4
[64]   Wu J Y, Wang K, Wang X M, et al. The role of the gut microbiome and its metabolites in metabolic diseases. Protein & Cell, 2021, 12(5):360-373.
[65]   Bryrup T, Thomsen C W, Kern T, et al. Metformin-induced changes of the gut microbiota in healthy young men: results of a non-blinded, one-armed intervention study. Diabetologia, 2019, 62(6):1024-1035.
doi: 10.1007/s00125-019-4848-7
[66]   Lee H, Lee Y, Kim J, et al. Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice. Gut Microbes, 2018, 9(2):155-165.
doi: 10.1080/19490976.2017.1405209
[67]   Shin N R, Lee J C, Lee H Y, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut, 2014, 63(5):727-735.
doi: 10.1136/gutjnl-2012-303839
[68]   Dimitrov D, Thiele I, Ferguson L R. Editorial: the human gutome: nutrigenomics of host-microbiome interactions. Frontiers in Genetics, 2016, 7:158.
doi: 10.3389/fgene.2016.00158 pmid: 27656194
[69]   Zhang M C, Feng R L, Yang M, et al. Effects of metformin, acarbose, and sitagliptin monotherapy on gut microbiota in Zucker diabetic fatty rats. BMJ Open Diabetes Research & Care, 2019, 7(1):e000717.
doi: 10.1136/bmjdrc-2019-000717
[70]   Zhang X Y, Fang Z W, Zhang C F, et al. Effects of acarbose on the gut microbiota of prediabetic patients: a randomized, double-blind, controlled crossover trial. Diabetes Therapy, 2017, 8(2):293-307.
doi: 10.1007/s13300-017-0226-y
[71]   Cao T T B, Wu K C, Hsu J L, et al. Effects of non-insulin anti-hyperglycemic agents on gut microbiota: a systematic review on human and animal studies. Frontiers in Endocrinology (Lausanne), 2020, 11:573891.
[72]   Smith B J, Miller R A, Ericsson A C, et al. Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiology, 2019, 19(1):130.
doi: 10.1186/s12866-019-1494-7
[73]   Gu Y Y, Wang X K, Li J H, et al. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nature Communications, 2017, 8(1):1785.
doi: 10.1038/s41467-017-01682-2
[74]   Li Y Q, Han L, Xu M, et al. The primary research on the gut microbes in KKAy mice. Indian Journal of Microbiology, 2014, 54(1):12-19.
doi: 10.1007/s12088-013-0410-3
[75]   Olivares M, Neyrinck A M, Pötgens S A, et al. The DPP-4 inhibitor vildagliptin impacts the gut microbiota and prevents disruption of intestinal homeostasis induced by a Western diet in mice. Diabetologia, 2018, 61(8):1838-1848.
doi: 10.1007/s00125-018-4647-6 pmid: 29797022
[1] TAN Pei-lin,ZHANG Ying,ZHANG Jun,GAO Xiao,WANG Shu-kun,HOU Lin,YUAN Zeng-qiang. Role and Mechanism of Metformin in Oligodendrocyte Precursor Cell Differentiation[J]. China Biotechnology, 2021, 41(9): 1-9.
[2] Xiao-chen LIU,Hu LIU,Liang ZHANG,Chun LI. Enzymatic Glycosylation and Its Function in Metabolic Process of Cells[J]. China Biotechnology, 2018, 38(1): 69-77.
[3] ZHONG Cheng, LIU Ling-pu, LI Qing-liang, YANG Pan-fei, HAO Jun-guang, JIA Shi-ru. Analyze the Mechanism of Flavor Compounds Formation Using Metabonomics Method During Industrial Beer Fermentation[J]. China Biotechnology, 2016, 36(12): 49-58.
[4] YIN Shou-liang, ZHANG Yu-xiu, ZHANG Qi, DOU Meng-nan, YANG Ke-qian. The Effect of Inorganic Phosphate on the Biosynthesis of Secondary Metabolites in Streptomyces[J]. China Biotechnology, 2015, 35(9): 105-113.
[5] LI Xiao-mei, LIN Chun-yan, PANG Ai-ping, LI Xiao-bo, ZHAO Guang-rong. Application of Synthetic Biology in Research and Development of the Secondary Metabolites from Streptomyces[J]. China Biotechnology, 2015, 35(4): 92-97.
[6] YUAN Pei-pei, CAO Wei-jia, WANG Zhen, ZHANG Bo-wen, CHEN Ke-quan, LI Yan, OUYANG Ping-kai. Regulation on L-phenylalanine Fermentation by Escherichia coli and Its Metabolic Flux Analysis[J]. China Biotechnology, 2015, 35(3): 25-34.
[7] YANG Yi, LI Zhi, GAO Ling-xia, SUN Yan. The Antibiotic Metabolites Genes of Pseudomonas fluorescens[J]. China Biotechnology, 2012, 32(08): 100-106.
[8] LV Zhi-wei, WU Wen-ping, BI Li-wei, JIANG Xing-xing, WANG Ya-ying. Establishment of Protocorm-like Bodies of Anoectochilus Formosanus Hayata in Suspension Culture for the Production of Secondary Metabolites[J]. China Biotechnology, 2012, 32(05): 43-50.
[9] ZHENG Lian-bao, QIU Juan-ping. The Application of Genome Shuffling in Developing New Metabolites[J]. China Biotechnology, 2012, 32(03): 100-105.
[10] LI Jing . Antifungal Substance from Biocontrol Bacillus subtilis B29 Strain[J]. China Biotechnology, 2008, 28(2): 59-65.