Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (6): 39-46    DOI: 10.13523/j.cb.2203005
    
Construction and Functional Verification of a Novel Two-in-one PiggyBac Transposon System
ZHANG Yao-cang1,PENG Yu1,DING Ke-xin2,TAI Fu-min2,ZHENG Xiao-fei2,QIN Yi-de1(),FU Han-jiang1,2()
1. School of Basic Medicine, Anhui Medical University, Hefei 230032, China
2. Beijing Key Laboratory of Radiobiology, Institute of Radiation Medicine, Academy of Military Medical Science, Beijing 100850, China
Download: HTML   PDF(4276KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: The PiggyBac (PB) transposon is a mobile genetic element that transposes between vectors and chromosomes using a “cut and paste” mechanism. Transposon elements and transposase expression cassettes were integrated into an expression vector to construct an easy-to-use two-in-one PB transposon system. Methods: The transposon elements and transposase expression cassette required for the PiggyBac transposon system were obtained by polymerase chain reaction (PCR), and the transposase expression cassette was recombined with the original pUC18 vector using T4 DNA ligase. Gibson homologous recombination technology was used to combine transposon elements with recombination vector to construct a two-in-one PB transposon system. The system was tested for its efficacy and reliability using enhanced green fluorescent protein (EGFP) and functional damage suppressor protein (DSUP). Results: EGFP was visible and bright in all puromycin-resistant cells. In addition, a cell line stably expressing functional DSUP was obtained through the two-in-one PB transposon system, demonstrating that the foreign gene can be efficiently integrated into the genomic DNA and expressed. Conclusion: A new two-in-one PB transposition system was successfully constructed, which made the establishment of stable expression cell lines more convenient and economical.



Key wordsPiggyBac transposon      Stable transfection      EGFP     
Received: 03 March 2022      Published: 07 July 2022
ZTFLH:  Q789  
Corresponding Authors: Yi-de QIN,Han-jiang FU     E-mail: fuhj75@126.com;yideqin@ahmu.edu.cn
Cite this article:

ZHANG Yao-cang,PENG Yu,DING Ke-xin,TAI Fu-min,ZHENG Xiao-fei,QIN Yi-de,FU Han-jiang. Construction and Functional Verification of a Novel Two-in-one PiggyBac Transposon System. China Biotechnology, 2022, 42(6): 39-46.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2203005     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I6/39

Name Sequence(5' to 3')
FALG-P2A-PuroR-F TACAAGTCCGGACTCAGATCTGGTACCGATTACAAAGACGATGACGATAAGG
FLAG-P2A-PuroR-R TCAGTTATCTAGATCCGGTGTCAGGCACCGGGCTTGCG
CMV-F TACGTTAAAGATAATCATGCGTAAAATTGACGCATGCCACCTCTGACTTGAGCGTCGAT
CMV-R CACCCTAGAAAGATAGTCTGCGTAAAATTGACGCATGGACTCTTGTTCCAAACTGGAAC
PiggyBac-F GTGTGGGAGGTTTTTTCGAGCCCTAGAAAGATAATCATATTGTGACGTACGTTAAAGATAATCATGCGT
PiggyBac-R GAGCTCGGTACATTACGCCACCCTAGAAAGATAGTCTGC
Transposase F TAAAACGACGGCCAGTGCCATGCCTAATGCGGCCGCCA
Transposase R TACGAATTCGAGCTCGGTACATTACGCCAAGCTTCAGGTCGAC
DSUP-F TTAGTGAACCGTCAGATCCGCTAGCGCTACCGGTCGCCACCATGGCATCCACACACCAATC
DSUP-R ATCGTCTTTGTAATCGGTACCCTTCCTCTTCCGTCCTCCAG
PEP-F CAGAGTGTCCGCCCTGAA
PEP-R CGGCGTTTGTCCACTTCA
PDP-F AGTGAGCAATGCAATTCTGGGAATGTTCAGGCTCTC
PDP-R CATCTTAAAACATGTTTATTTTTCCATTTCATCTTT
Table 1 Primers sequence for PCR
Fig.1 A flow diagram outlining the construction of the two-in-one PiggyBac transposon system
Fig.2 Colony polymerase chain reaction (PCR) validation of the vector(a) Validation of PB-All-EGFP-PuroR vector by colony PCR (b) Validation of PB-All-DUSP-PuroR by colony PCR vector (WT)
Fig.3 Usability verification of the two-in-one PiggyBac transposon system(a) The pEGFP-PuroR vector contains enhanced green fluorescent protein (EGFP) and puromycin resistance protein (PuroR) coding regions, the PB-All-EGFP-PuroR vector contains both EGFP-PuroR and transposase cassettes separated by 5' and 3' PiggyBac inverted terminal repeats (b) EGFP transient expression in HEK-293T cells transfected with the pEGFP-PuroR and PB-All-EGFP-PuroR vectors (c) EGFP stable expression in HEK-293T cells transfected with the pEGFP-PuroR and PB-All-EGFP-PuroR vectors. The stably expressing cells were selected by treating the cells with 2 μg/mL of puromycin for 14 days
Fig.4 Detection of inserts in genomic DNA
Fig.5 Stably expressing dual-specific phosphatase (DSUP) HEK-293T cell lines established using the all-in-one PiggyBac transposon system(a)Western blot indicated stable DSUP expression in HEK-293T cells (b)DSUP reduced the level of phosphor-histone-H2AX induced by γ-rays (c)DSUP decreased the γ-H2AX foci induced by γ-rays (d)Stably expressing DSUP counteracted the γ-ray-induced inhibition of HEK-293T cell proliferation. Data were presented as the mean ± s.e.m. of three independent experiments, *P<0.05 vs indicated group
[1]   Kaestner L, Scholz A, Lipp P. Conceptual and technical aspects of transfection and gene delivery. Bioorganic & Medicinal Chemistry Letters, 2015, 25(6): 1171-1176.
doi: 10.1016/j.bmcl.2015.01.018
[2]   Unciti-Broceta A, Bacon M N, Bradley M. Strategies for the preparation of synthetic transfection vectors. Topics in Current Chemistry, 2010, 296: 15-49.
[3]   Klein P M, Wagner E. Bioreducible polycations as shuttles for therapeutic nucleic acid and protein transfection. Antioxidants & Redox Signaling, 2014, 21(5): 804-817.
[4]   Prados J, Alvarez P J, Melguizo C, et al. How is gene transfection able to improve current chemotherapy? The role of combined therapy in cancer treatment. Current Medicinal Chemistry, 2012, 19(12): 1870-1888.
doi: 10.2174/092986712800099820
[5]   Stepanenko A A, Heng H H. Transient and stable vector transfection: pitfalls, off-target effects, artifacts. Mutation Research/Reviews in Mutation Research, 2017, 773: 91-103.
doi: 10.1016/j.mrrev.2017.05.002
[6]   Zhou Y, Liang Q L, Ou W T, et al. Effect of stable transfection with PHD 3 on growth and proliferation of HepG2 cells in vitro and in vivo. International Journal of Clinical and Experimental Medicine, 2014, 7(8): 2197-2203.
[7]   Poulain A, Perret S, Malenfant F, et al. Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch. Journal of Biotechnology, 2017, 255: 16-27.
doi: 10.1016/j.jbiotec.2017.06.009
[8]   Solodushko V, Bitko V, Fouty B. Minimal piggyBac vectors for chromatin integration. Gene Therapy, 2014, 21(1): 1-9.
doi: 10.1038/gt.2013.52 pmid: 24131979
[9]   Ding S, Wu X H, Li G, et al. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell, 2005, 122(3): 473-483.
doi: 10.1016/j.cell.2005.07.013
[10]   Li L, Liu P, Sun L, et al. PiggyBac transposon-based polyadenylation-signal trap for genome-wide mutagenesis in mice. Scientific Reports, 2016, 6: 27788.
doi: 10.1038/srep27788
[11]   Elick T A, Bauser C A, Fraser M J. Excision of the piggyBac transposable element in vitro is a precise event that is enhanced by the expression of its encoded transposase. Genetica, 1996, 98(1): 33-41.
pmid: 8765680
[12]   Woodard L E, Wilson M H. PiggyBac-ing models and new therapeutic strategies. Trends in Biotechnology, 2015, 33(9): 525-533.
doi: 10.1016/j.tibtech.2015.06.009 pmid: 26211958
[13]   Wang G, Yang L, Grishin D, et al. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies. Nature Protocols, 2017, 12(1): 88-103.
doi: 10.1038/nprot.2016.152
[14]   刘琳, 张美丽, 黄粤. DNA转座子在小鼠基因功能研究中的应用. 遗传, 2011, 33(5): 485-493.
[14]   Liu L, Zhang M L, Huang Y. Applications of DNA transposons to the study of gene function in mice. Hereditas(Beijing), 2011, 33(5): 485-493.
[15]   Lacoste A, Berenshteyn F, Brivanlou A H. An efficient and reversible transposable system for gene delivery and lineage-specific differentiation in human embryonic stem cells. Cell Stem Cell, 2009, 5(3): 332-342.
doi: 10.1016/j.stem.2009.07.011 pmid: 19733544
[16]   Urschitz J, Kawasumi M, Owens J, et al. Helper-independent piggyBac plasmids for gene delivery approaches: strategies for avoiding potential genotoxic effects. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(18): 8117-8122.
[17]   Wang W, Lin C Y, Lu D, et al. Chromosomal transposition of piggyBac in mouse embryonic stem cells. PNAS, 2008, 105(27): 9290-9295.
doi: 10.1073/pnas.0801017105 pmid: 18579772
[18]   Chew S K, Rad R, Futreal P A, et al. Genetic screens using the piggyBac transposon. Methods, 2011, 53(4): 366-371.
doi: 10.1016/j.ymeth.2010.12.022 pmid: 21185377
[19]   Zhao S, Jiang E Z, Chen S S, et al. PiggyBac transposon vectors: the tools of the human gene encoding. Translational Lung Cancer Research, 2016, 5(1): 120-125.
[20]   Hashimoto T, Horikawa D D, Saito Y, et al. Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nature Communications, 2016, 7: 12808.
doi: 10.1038/ncomms12808 pmid: 27649274
[21]   Mirzaei H, Sahebkar A, Jaafari M R, et al. PiggyBac as a novel vector in cancer gene therapy: current perspective. Cancer Gene Therapy, 2016, 23(2-3): 45-47.
doi: 10.1038/cgt.2015.68 pmid: 26742580
[22]   Park T S, Han J Y. PiggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chickens. PNAS, 2012, 109(24): 9337-9341.
doi: 10.1073/pnas.1203823109 pmid: 22645326
[23]   Yusa K, Rad R, Takeda J, et al. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nature Methods, 2009, 6(5): 363-369.
doi: 10.1038/nmeth.1323
[24]   Cheng M, Jin X B, Mu L L, et al. Combination of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 technique with the piggybac transposon system for mouse in utero electroporation to study cortical development. Journal of Neuroscience Research, 2016, 94(9): 814-824.
doi: 10.1002/jnr.23776 pmid: 27317429
[1] Zhan-bing MA,Jie DANG,Ji-hui YANG,Zheng-hao HUO,Guang-xian XU. Establishment and Application of Dual Fluorescent Labeling Multi-functional Autophagy Flux Monitoring System Based on Lentiviral System[J]. China Biotechnology, 2019, 39(5): 88-95.
[2] Yuan-qiao CHEN,Ding-pei LONG,Xiao-xue DOU,Run QI,Ai-chun ZHAO. Studies on the Protein Purification Ability of an ELP30-Tag in Prokaryotic Expression System[J]. China Biotechnology, 2018, 38(2): 54-60.
[3] YE Yu-chen, ZHAO Jun-long, WANG Lin, DUAN Juan-li, GAO Chun-chen, QIN Hong-yan, DOU Ke-feng. Construction of A Cell Line EGFP-Luc-Hepa1-6 and Its Application in the Mouse Model of the Hepatoma[J]. China Biotechnology, 2015, 35(5): 1-7.
[4] ZHU Yi-long, LI Chang, GUO Yan, LIU Cun-xia, DU Shou-wen, WANG Mao-peng, JIN Ning-yi. Construction and Selection of the Recombinant Fowlpox Expressing HIV-1 gag[J]. China Biotechnology, 2014, 34(1): 57-63.
[5] WU Chen, TIAN Huan-na, WANG Yuan-yuan, LIU Fang-ming, ZHANG Xiao-kang, LI Qin-jian, XIE Yuan-yuan. Effect of GALNT14 on the Migration of Human Breast Cancer Cells MCF-7[J]. China Biotechnology, 2012, 32(07): 8-15.
[6] YAN Xing, SHI Ming-lei, CHEN Na, WANG Yang, ZHANG Yan, WANG Zheng, LI Xiao-chen, ZHAO Zhi-hu. Construction of a Fluorescence Detection Method for HCV NS3/4A Protease Activity[J]. China Biotechnology, 2012, 32(07): 84-88.
[7] DU Shou-wen, LI Chang, WANG Yu-hang, REN Da-yong, LIU Cun-xia, SUN Dan-dan, ZHU Na, LI Yi, QIN Yan-qing, JIN Ning-yi. Construction and Verification of Neotype Expression Vector Containing Two Expression Cassettes[J]. China Biotechnology, 2011, 31(9): 14-20.
[8] ZHANG Mei, FU Yuan-hui, HE Jin-sheng, LU Yan-yan, ZHENG Xian-xian. Expression and Purification of Enhanced Green Fluorescent Protein Based on Baculovirus Expression System[J]. China Biotechnology, 2011, 31(5): 99-103.
[9] LI Pei-pei, YOU Lei-ming, LOU Jun, E Wei, JIANG Zhi-zheng, ZHI Yu-bao, ZHANG Gai-ping, WANG Ai-ping. A Dual-marker Vector for Constant RNAi and Rapid Selection of Stable RNAi Clones in Gallus Cells[J]. China Biotechnology, 2011, 31(11): 81-89.
[10] . Expression and Purification of Enhanced Green Fluorescent Protein Based on Baculovirus Expression System[J]. China Biotechnology, 2011, 31(05): 0-0.
[11] CAI Yan-fei, ZHU Rui-yu, CHEN Yun, JIN Jian. Study on the Activity of EMCV IRES[J]. China Biotechnology, 2011, 31(02): 12-17.
[12] TUN Kun, FENG Juan, TAO Lun-An, CHU Su-Xia, HAN Yun-Chao. Potential Industrial Production of Foreign Protein in Silkworm Using the Collusion Bodies of Recombinant Bombyx mori(silkworm) Multiple Nucleopolyhedrovirus Rescuesd by Polyhedrin Expressing Stable Cell Line[J]. China Biotechnology, 2010, 30(05): 96-102.
[13] . Construction of eukaryotic expression vectors by use of human CD46 promoter[J]. China Biotechnology, 2007, 27(11): 11-15.
[14] . Influence of the Chicken β-actin Intron 1 on the EGFP Expression of Gene Transfer Vector Derived from Equine Infectious Anemia Virus[J]. China Biotechnology, 2007, 27(11): 77-81.
[15] . Construction of a Novel Eukaryotic Expression Plasmid pcDNA6/myc-his-EGFP B and Its Applications in Expression of Recombinant Genes[J]. China Biotechnology, 2006, 26(12): 22-28.