Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (5): 88-95    DOI: 10.13523/j.cb.20190510
    
Establishment and Application of Dual Fluorescent Labeling Multi-functional Autophagy Flux Monitoring System Based on Lentiviral System
Zhan-bing MA1,2,Jie DANG1,2,Ji-hui YANG3,Zheng-hao HUO1,2,**(),Guang-xian XU4()
1 Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004,China
2 Key Laboratory of Fertility Conservation of Ministry of Education, Ningxia Hui Autonomous Region, Yinchuan 750004,China
3 Science and Technology Center, Ningxia Medical University, Yinchuan 750004,China
4 Clinical College, Ningxia Medical University, Yinchuan 750004,China
Download: HTML   PDF(4244KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To construct a red fluorescent protein-green fluorescent protein-murine LC3 fusion multi-lentiviral expression vector (PCDH-Duo-mRFP-eGFPph-LC3rat, PCDH-Duo),which can be used to stably monitor the changes of autophagy flux and overexpression genes. Changes in autophagic flow were observed in the mouse peritoneal macrophage Raw264.7 stable strain.Methods:The mRFP-eGFPph-LC3rat fusion gene was synthesized by PAS and cloned into the lentiviral expression vector PCDH-CMV-MCS-EF1a-copGFP. After the recombinant plasmid was correctly analyzed by PCR, enzyme digestion and sequencing, the lentivirus was packaged. Raw264.7 cells were transfected, and stable cells were obtained by FACS. The reliability of the eGFP protein expression system was confirmed by CQ autophagy inhibition model and Western blot.Results:The recombinant plasmid of PCDH-Duo lentivirus was successfully constructed, which was coated with lentivirus and obtained stable cell line of Raw264.7. The expression of double fluorescent protein was stable. After induction by 3mmol/L CQ for 6h, it was stable and accurate. The phasing changes.Conclusion:The dual-fluorescence multi-function autophagic flux monitoring system based on lentivirus system was successfully constructed, which provides a convenient and powerful tool for studying the relationship between autophagy and coding genes and non-coding genes.



Key wordsAutophagic flux      Vector construction      Lentivirus      mRFP-eGFP-LC3     
Received: 08 November 2018      Published: 04 June 2019
ZTFLH:  Q819  
Corresponding Authors: Zheng-hao HUO     E-mail: huozhh@163.com;xuguangxian@nxmu.edu.cn
Cite this article:

Zhan-bing MA,Jie DANG,Ji-hui YANG,Zheng-hao HUO,Guang-xian XU. Establishment and Application of Dual Fluorescent Labeling Multi-functional Autophagy Flux Monitoring System Based on Lentiviral System. China Biotechnology, 2019, 39(5): 88-95.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190510     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I5/88

Primer
ID
Name Sequence (5'-3')
P1 Cmv-F CGCAAATGGGCGGTAGGCGTG
P2 mRFP-EGFP-LC3-Seq1 GCCGTTACAGATCCAAGC
P3 mRFP-EGFP-LC3-Seq2 ACGCTGAGGTCAAGACCA
P4 mRFP-EGFP-LC3-V-seqR TGAAAGCCATACGGGAAG
Table 1 Sequencing primer for full-length gene
Fig.1 Recombinant vector map and protein homology modeling
Fig.2 Full-length fusion gene synthesis via PAS (a),colony PCR identification (b),restriction endonuclease analysis (c) and sequencing verification (d)
Fig.3 The fluorescence results of lentivirus packaging in 293T after 48h
Fig.4 The results of Raw264.7 infected with PCDH-Duo-Lv at 72h
Fig.5 Flow cytometry of dual fluorescently labeled Raw264.7 cells
Fig.6 Detection EGFP through Western blot
Fig.7 Autophagy flux detection in CQ inhibition of Raw264.7-PCDH-Duo stable cell model Mock: Raw264.7-PCDH-Duo (a) P<0.01 (b) P<0.05
[1]   Chun Y, Kim J . Autophagy: an essential degradation program for cellular homeostasis and life. Cells, 2018,7(12):278-304.
doi: 10.3390/cells7120278
[2]   Gottlieb R A, Andres A M, Sin J , et al. Untangling autophagy measurements: all fluxed up. Circulation Research, 2015,116(3):504-514.
doi: 10.1161/CIRCRESAHA.116.303787
[3]   Hurley J H, Nogales E . Next-generation electron microscopy in autophagy research. Current Opinion in Structural Biology, 2016,41:211-216.
doi: 10.1016/j.sbi.2016.08.006
[4]   Kimura S, Fujita N, Noda T , et al. Monitoring autophagy in mammalian cultured cells through the dynamics of LC3. Methods in Enzymology, 2009,452:1-12.
doi: 10.1016/S0076-6879(08)03601-X
[5]   Ktistakis N T . Monitoring the localization of MAP1LC3B by indirect immunofluorescence. Cold Spring Harbor Protocols, 2015,2015(8):751-755.
[6]   Shen Z Y, Xu L Y, Li E M , et al. Autophagy and endocytosis in the amnion. Journal of Structural Biology, 2008,162(2):197-204.
doi: 10.1016/j.jsb.2006.10.010
[7]   Tanida I, Waguri S. Measurement of autophagy in cells and tissues: methods in molecular biology (methods and protocols). New York:Humana Press, 2010: 193-214.
[8]   Kabeya Y, Mizushima N, Ueno T , et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO Journal, 2000,19(21):5720-5728.
doi: 10.1093/emboj/19.21.5720
[9]   Tanida I, Ueno T, Kominami E . LC3 conjugation system in mammalian autophagy. The International Journal of Biochemistry & Cell Biology, 2004,36(12):2503-2518.
[10]   Turksen K. Autophagy in differentiation and tissue maintenance: methods and protocols (methods in molecular biology). New York: Humana Press, 2018: 209-222.
[11]   Zhou C, Zhong W, Zhou J , et al. Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells. Autophagy, 2012,8(8):1215-1226.
doi: 10.4161/auto.20284
[12]   Tang Z H, Cao W X, Wang Z Y , et al. Induction of reactive oxygen species-stimulated distinctive autophagy by chelerythrine in non-small cell lung cancer cells. Redox Biology, 2017,12:367-376.
doi: 10.1016/j.redox.2017.03.009
[13]   Mahon M J . pHluorin2: an enhanced, ratiometric, pH-sensitive green florescent protein. Advances in Bioscience and Biotechnology, 2011,2(3):132-137.
doi: 10.4236/abb.2011.23021
[14]   Sena-Esteves M, Gao G . Titration of lentivirus vectors. Cold Spring Harbor protocols, 2018,2018(4):281-285.
[15]   Min Z, Ting Y, Mingtao G , et al. Monitoring autophagic flux using p62/SQSTM1 based luciferase reporters in glioma cells. Experimental Cell Research, 2018,363(1):84-94.
doi: 10.1016/j.yexcr.2017.12.027
[16]   Iwashita H, Sakurai H T, Nagahora N , et al. Small fluorescent molecules for monitoring autophagic flux. FEBS Letters, 2018,592(4):559-567.
doi: 10.1002/feb2.2018.592.issue-4
[17]   Gretzmeier C, Eiselein S, Johnson G R , et al. Degradation of protein translation machinery by amino acid starvation-induced macroautophagy. Autophagy, 2017,13(6):1064-1075.
doi: 10.1080/15548627.2016.1274485
[18]   Kuma A, Komatsu M, Mizushima N . Autophagy-monitoring and autophagy-deficient mice. Autophagy, 2017,13(10):1619-1628.
doi: 10.1080/15548627.2017.1343770
[19]   Adiseshaiah P P, Skoczen S L, Rodriguez J C , et al. Autophagy monitoring assay II: Imaging autophagy induction in LLC-PK1 cells using GFP-LC3 protein fusion construct(methods in molecular biology).New York: Humana Press, 2018: 211-219.
[20]   Lina T T, Luo T, Velayutham T S , et al. Ehrlichia activation of Wnt-PI3K-mTOR signaling inhibits autolysosome generation and autophagic destruction by the mononuclear phagocyte. Infection & Immunity, 2017,85(12):690-707.
[21]   Bampton E T, Goemans C G, Niranjan D , et al. The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy, 2005,1(1):23-36.
doi: 10.4161/auto.1.1.1495
[22]   Koo V, Lee A, Eldin O S , et al. pcDNA3.1td tomato is superior to pDsRed2-N1 for optical huorescence imaging in the F344/AY-27 rat model of bladder cancer. Molecular Imaging & Biology, 2010,12(5):509-519.
[23]   Zhu B S, Yu L Y, Zhao K , et al. Effects of small interfering RNA inhibit class I phosphoinositide 3-kinase on human gastric cancer cells. World Journal of Gastroenterology, 2013,19(11):1760-1769.
doi: 10.3748/wjg.v19.i11.1760
[24]   Pugsley H R . Assessing autophagic flux by measuring LC3, p62, and LAMP1 co-localization using multispectral imaging flow cytometry. J Vis Exp, 2017,125(e55637):55637-55637.
[25]   Maulucci G, Chiarpotto M, Papi M , et al. Quantitative analysis of autophagic flux by confocal pH-imaging of autophagic intermediates. Autophagy, 2015,11(10):1905-1916.
doi: 10.1080/15548627.2015.1084455
[26]   Hale C M, Cheng Q, Ortuno D , et al. Identification of modulators of autophagic flux in an image-based high content siRNA screen. Autophagy, 2016,12(4):713-726.
doi: 10.1080/15548627.2016.1147669
[27]   Klionsky D J, Abdelmohsen K, Abe A , et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2016,12(1):1-222.
doi: 10.1080/15548627.2015.1100356
[28]   王婉, 张庆, 赵润鹏 , 等. 稳定表达RFP-GFP- LC3的RAW264.7细胞株的建立. 细胞与分子免疫学杂志, 2015,31(9):1175-1179.
[28]   Wang W, Zhang Q, Zhao RP , et al. Establishment of RAW264.7 cell line stably expressing RFP-GFP-LC3. Journal of Cellular and Molecular Immunology, 2015,31(9):1175-1179.
[1] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[2] Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG. Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System[J]. China Biotechnology, 2019, 39(7): 39-47.
[3] Ya-li HAN,Guang-heng YANG,Yan-wen CHEN,Xiu-li GONG,Jing-zhi ZHANG. The Optimization of Self-deleting Lentiviral Vector Carrying Human β-globin Gene and Promoter[J]. China Biotechnology, 2018, 38(7): 50-57.
[4] TIAN Cong-hui, XIE Xue-mei, LI Ying, YIN Xiao-dong, HAN Jun, LI Jun. Construction of the IRES-based Vector for Multiple Gene Co-expression[J]. China Biotechnology, 2017, 37(7): 97-104.
[5] ZUO Zhi-yu, XIN Ling-biao, YANG Jie, WANG Xin-ting. Construction of SND1 Transgenic Mice[J]. China Biotechnology, 2016, 36(4): 97-103.
[6] DAI Yu huan, XU Yao, LUO Ying, DAI Yang, SHI Wei lin, XU Yao. The Transcriptional Regulation of Ca2+ Channel Mediated by Myocardin in H9C2 Cell[J]. China Biotechnology, 2016, 36(11): 1-6.
[7] LIANG Zhen-xin, YIN Fu-qiang, LIU Qing-you, LI Li. Progress and Technology in Mammary Gland Bioreactor of Transgenic Animals[J]. China Biotechnology, 2015, 35(2): 92-98.
[8] LIU Xue-jie, LIN Wei-ran, TANG Li-chun, SUN Wei, WEI Han-dong, JIANG Ying. Construction of Lentiviral Expression Vector Expressing Human RAB27A and Investigation Its Effect on the Proliferation of HepG2 Cell Lines[J]. China Biotechnology, 2014, 34(9): 16-23.
[9] LI Yu-qiang, ZHU Zhi-tu, WANG Wei, LI Chen, XU Na, WANG Yu, LI Nan, SUN Hong-zhi. Effect of Silencing Nup88 Gene by RNA Interference on Growth and Invasion in Human Breast Cancer MCF-7 Cell[J]. China Biotechnology, 2014, 34(9): 31-39.
[10] QIN Yao, ZHAO Hong-yan, ZHANG Wen-hang, WANG Dong-mei. Generation of Mitochondrial Transcription Factor a Knockdown Transgenic Mice[J]. China Biotechnology, 2014, 34(7): 44-48.
[11] FU Hui, LI Fei-fei, MA Qiong, FU Huai-xiu, CUI Yu-fang, MAO Jian-ping. Experimental Screening mRNA Targets by Reverse Transcription for Ribozyme to GPA Expression Interference[J]. China Biotechnology, 2014, 34(3): 84-90.
[12] LIU Bo-ning. The Technology Progress of Antibody-producing Cell Line Development[J]. China Biotechnology, 2013, 33(6): 111-116.
[13] YAN Hai-fen, YI Kang-le, TREFIL P, HU Xong-gui, DENG Yuang, ZHU Li-jun. Transgenic Chickens Made by Injection of Lentiviral into Eggs[J]. China Biotechnology, 2012, 32(12): 73-79.
[14] SHI Yong-qian, HE Wen-teng, ZHOU Yang, JIAO Ming-xia, XIE Bing-teng, HU Kui, KONG Qing-ran, LIU Zhong-hua. Study on Generation of Chimeric Porcine Embryos Derived from Lentivirus Mediated Green Fluorescent Protein(GFP) Transgene Embryos[J]. China Biotechnology, 2012, 32(08): 68-74.
[15] WANG Yun-yang, WANG Chun-mei, CHEN Chen, SHI Ding-ji. The Genetic Transformation System in Model Species Physcomitrella patens[J]. China Biotechnology, 2012, 32(01): 103-108.