Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (1/2): 26-36    DOI: 10.13523/j.cb.2108031
Orginal Article     
The Industrial Applications of Saccharomyces cerevisiae
ZHANG Yao1,2,QIU Xiao-man1,2,SUN Hao1,2,GUO Lei1,2,HONG Hou-sheng1,2,3,*()
1 College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
2 National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, Nanjing 211816, China
3 Nanjing Highke Bioengineering Equipment Co., Ltd., Nanjing 210009, China
Download: HTML   PDF(2424KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Saccharomyces cerevisiae is widely applied in fields like food, brewing, chemical industry and medicine. Based on constructed production line or demonstrated production line for Saccharomyces cerevisiae, the paper reviews the development process and essential technologies of yeast biomass manufacturing industry; the application of yeast biomass in wine brewing, functional food and food additives manufacturing field is introduced; the product manufacturing plan of yeast cell factory is summarized and the industrial development of products like bulk chemicals made by yeast cell factory, refined chemicals and biological fuels are introduced; all these provide reference to biological manufacturing from laboratory to industrial production.



Key wordsSaccharomyces cerevisiae      Yeast biomass      Cell factory      Industrial production      Integrated equipment     
Received: 11 August 2021      Published: 03 March 2022
ZTFLH:  Q599TQ921  
Corresponding Authors: Hou-sheng HONG     E-mail: hhs@njtech.edu.cn
Cite this article:

ZHANG Yao,QIU Xiao-man,SUN Hao,GUO Lei,HONG Hou-sheng. The Industrial Applications of Saccharomyces cerevisiae. China Biotechnology, 2022, 42(1/2): 26-36.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2108031     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I1/2/26

产品 生产商 关键工艺 年产能/(t/a) 参考文献
酵母生物质 Angel ect. 酵母高密度培养工艺
活性干酵母制成工艺

(工业生产)
[5]
酵母抽提物 Biospringer ect. 细胞壁破壁工艺
酵母自溶工艺

(工业生产)
[6]
核苷酸 同凯兆业 气升式反应器连续生产酵母
核苷酸连续分离工艺
600
(工业生产)
[7-10]
木糖醇 酵母全细胞催化体系
产物下游分离工艺

(实验室开发)
[11]
青蒿素 Sanofi 青蒿素前体生物合成工艺
半合成青蒿素化学合成工艺
39
(工业生产)
[12-15]
3-羟基丙酸 强化菌株3-羟基丙酸合成途径
平衡菌株前体和辅酶供给策略

(实验室开发)
[16]
丁二酸 Reverdia 重组酿酒酵母(by DSM)
丁二酸的低pH发酵和分离工艺
10 000
(工业生产)
[17]
乳酸 Cargill 低pH发酵生产乳酸工艺
LAB 酵母菌株
25 000
(工业生产)
[18]
燃料乙醇
(固定化细胞)
中粮生化 强化EPS合成的酿酒酵母菌株
新型细胞固定化过程

(工业示范)
[19]
生物丁醇 Gevo 重组酿酒酵母
产品下游分离工艺

(工业示范)
[20]
Table 1 Overview of the industrialized production line of Saccharomyces cerevisiae
Fig.1 Flow chart of yeast biomass manufacturing
Fig.2 Products made from Saccharomyces cerevisiae
[1]   孙万儒. 酵母菌. 生物学通报, 2007, 42(11):5-10.
[1]   Sun W R. Yeast. Bulletin of Biology, 2007, 42(11):5-10.
[2]   Li M J, Borodina I. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae. FEMS Yeast Research, 2015, 15(1):1-12.
doi: 10.1093/femsyr/fou003
[3]   Nielsen J. Yeast systems biology: model organism and cell factory. Biotechnology Journal, 2019, 14(9):e1800421.
[4]   Belcher M S, Mahinthakumar J, Keasling J D. New frontiers: harnessing pivotal advances in microbial engineering for the biosynthesis of plant-derived terpenoids. Current Opinion in Biotechnology, 2020, 65:88-93.
doi: 10.1016/j.copbio.2020.02.001
[5]   Bekatorou A, Psarianos C, Koutinas A A. Production of food grade yeasts. Food Technology and Biotechnology. 2006, 44(3):407-415.
[6]   Chae H J, Joo H, In M J. Utilization of brewer’s yeast cells for the production of food-grade yeast extract. Part 1: effects of different enzymatic treatments on solid and protein recovery and flavor characteristics. Bioresource Technology, 2001, 76(3):253-258.
pmid: 11198178
[7]   Chen Y, Li S Y, Xiong J, et al. The mechanisms of citrate on regulating the distribution of carbon flux in the biosynthesis of uridine 5'-monophosphate by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2010, 86(1):75-81.
doi: 10.1007/s00253-009-2287-y
[8]   He Q T, Li N, Chen X C, et al. Mutation breeding of nuclease p1 production in Penicillium citrinum by low-energy ion beam implantation. Korean Journal of Chemical Engineering, 2011, 28(2):544-549.
doi: 10.1007/s11814-010-0404-3
[9]   应汉杰, 吕浩, 赵谷林. 一种连续分离5'-核苷三磷酸的方法:中国,CN200610085384.7. 2006-12-06[2021-05-21]. https://xueshu.baidu.com/usercenter/paper/show?paperid=1s3602g09f2h02x08g1y0rk088727544&site=xueshu_se&hitarticle=1.
[9]   Ying H J, Lv H, Zhao G L. Cytidine 5'- triphosphate separation and purification by ion exchange resin: CN200610085384.7. 2006-12-06[2021-05-21]. https://xueshu.baidu.com/usercenter/paper/show?paperid=1s3602g09f2h02x08g1y0rk088727544&site=xueshu_se&hitarticle=1.
[10]   中国科学院国家自然科学基金委员会. 中国学科发展战略·化工过程强化. 北京: 科学出版社, 2018: 51-69.
[10]   NNSF Intensification. Chinese Academy of Sciences, National Natural Science Foundation of China. Chemical process intensification. Beijing: Science Press, 2018: 51-69.
[11]   Dasgupta D, Bandhu S, Adhikari D K, et al. Challenges and prospects of xylitol production with whole cell bio-catalysis: a review. Microbiological Research, 2017, 197:9-21.
doi: 10.1016/j.micres.2016.12.012
[12]   Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496(7446):528-532.
doi: 10.1038/nature12051
[13]   Westfall P J, Pitera D J, Lenihan J R, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(3):E111-E118.
[14]   刘德龙, 张万斌. 青蒿素可工业化合成研究进展. 科学通报, 2017, 62(18):1997-2006.
[14]   Liu D L, Zhang W B. The development on the research of industrial production of artemisinin. Chinese Science Bulletin, 2017, 62(18):1997-2006.
[15]   Turconi J, Griolet F, Guevel R, et al. Semisynthetic artemisinin, the chemical path to industrial production. Organic Process Research & Development, 2014, 18(3):417-422.
[16]   Tong T, Tao Z Y, Chen X L, et al. A biosynthesis pathway for 3-hydroxypropionic acid production in genetically engineered Saccharomyces cerevisiae. Green Chemistry, 2021, 23(12):4502-4509.
doi: 10.1039/D0GC04431H
[17]   Mancini E, Mansouri S S, Gernaey K V, et al. From second generation feed-stocks to innovative fermentation and downstream techniques for succinic acid production. Critical Reviews in Environmental Science and Technology, 2020, 50(18):1829-1873.
doi: 10.1080/10643389.2019.1670530
[18]   Lee J Y, Kang C D, Lee S H, et al. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid. Biotechnology and Bioengineering, 2015, 112(4):751-758.
doi: 10.1002/bit.v112.4
[19]   Liang C C, Ding S, Sun W J, et al. Biofilm-based fermentation: a novel immobilisation strategy for Saccharomyces cerevisiae cell cycle progression during ethanol production. Applied Microbiology and Biotechnology, 2020, 104(17):7495-7505.
doi: 10.1007/s00253-020-10770-1
[20]   Swidah R, Wang H, Reid P J, et al. Butanol production in S. cerevisiae via a synthetic ABE pathway is enhanced by specific metabolic engineering and butanol resistance. Biotechnology for Biofuels, 2015, 8:97.
doi: 10.1186/s13068-015-0281-4 pmid: 26175798
[21]   Chapman J W. The development and use of novel yeast strains for food and drink manufacture. Trends in Food Science & Technology, 1991, 2:176-180.
[22]   Pérez-Torrado R, Gamero E, Gómez-Pastor R, et al. Yeast biomass, an optimised product with myriad applications in the food industry. Trends in Food Science & Technology, 2015, 46(2):167-175.
[23]   Robinson R K. Encyclopedia of food microbiology. Carolina: Academic Press, 2014: 823-830.
[24]   李寅, 高海军, 陈坚. 高细胞密度发酵技术. 北京: 化学工业出版社, 2006: 13-16.
[24]   Li Y, Gao H J, Chen J. High cell density fermentation technology. Beijing: Chemical Industry Press, 2006: 13-16.
[25]   di Serio M, Aramo P, de Alteriis E, et al. Quantitative analysis of the key factors affecting yeast growth. Industrial & Engineering Chemistry Research, 2003, 42(21):5109-5116.
doi: 10.1021/ie030078z
[26]   Blanco C A, Rayo J, Giralda J M. Improving industrial full-scale production of baker’s yeast by optimizing aeration control. Journal of AOAC International, 2008, 91(3):607-613.
doi: 10.1093/jaoac/91.3.607
[27]   Jun S M, Kuwazaki S, Tanaka F, et al. Identification of genes whose expressions are enhanced or reduced in baker’s yeast during fed-batch culture process using molasses medium by DNA microarray analysis. International Journal of Food Microbiology, 2005, 102(1):63-71.
doi: 10.1016/j.ijfoodmicro.2004.12.003
[28]   Imura M, Iwakiri R, Bamba T, et al. Metabolomics approach to reduce the Crabtree effect in continuous culture of Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2018, 126(2):183-188.
doi: 10.1016/j.jbiosc.2018.02.008
[29]   de D R H. The Crabtree effect: a regulatory system in yeast. Journal of General Microbiology, 1966, 44(2):149-156.
[30]   Shimizu K, Matsuoka Y. Regulation of glycolytic flux and overflow metabolism depending on the source of energy generation for energy demand. Biotechnology Advances, 2019, 37(2):284-305.
doi: 10.1016/j.biotechadv.2018.12.007
[31]   Chopda V R, Rathore A S, Gomes J. Maximizing biomass concentration in baker’s yeast process by using a decoupled geometric controller for substrate and dissolved oxygen. Bioresource Technology, 2015, 196:160-168.
doi: 10.1016/j.biortech.2015.07.050 pmid: 26233328
[32]   Habegger L, Rodrigues Crespo K, Dabros M. Preventing overflow metabolism in crabtree-positive microorganisms through on-line monitoring and control of fed-batch fermentations. Fermentation, 2018, 4(3):79.
doi: 10.3390/fermentation4030079
[33]   徐富增, 王柯, 李善元, 等. 拟指数-DO-stat两阶段补料策略在糖蜜酵母高密度培养中的应用. 食品与发酵工业, 2019, 45(7):15-21.
[33]   Xu F Z, Wang K, Li S Y, et al. Application of quasi-exponential-DO-Stat two-stage feeding strategy in high-cell-density cultivation of Saccharomyces cerevisiae. Food and Fermentation Industries, 2019, 45(7):15-21.
[34]   Hong H S, Cai Z J, Li J Q, et al. Simulation of gas-inducing reactor couples gas-liquid mass transfer and biochemical reaction. Biochemical Engineering Journal, 2014, 91:1-9.
doi: 10.1016/j.bej.2014.06.015
[35]   Gélinas P. Active dry yeast: lessons from patents and science. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(4):1227-1255.
doi: 10.1111/crf3.2019.18.issue-4
[36]   Trofimova Y, Walker G, Rapoport A. Anhydrobiosis in yeast: influence of calcium and magnesium ions on yeast resistance to dehydration-rehydration. FEMS Microbiology Letters, 2010, 308(1):55-61.
doi: 10.1111/j.1574-6968.2010.01989.x pmid: 20487021
[37]   Beker M J, Rapoport A I. Conservation of yeasts by dehydration. Advances in Biochemical Engineering & Biotechnology, 1987, 35:127-171.
[38]   Anastasovski A K. Energy efficiency improvement in the system for drying baker`s yeast. Macedonian Journal of Chemistry and Chemical Engineering, 2019, 38(1):115.
doi: 10.20450/mjcce.2019.1476
[39]   Reed G, Nagodawithana T W. Brewer’s yeast. Yeast Technology. Dordrecht: Springer Netherlands, 1991: 89-149.
[40]   Tornai-Lehoczki J, Dlauchy D. Delimination of brewing yeast strains using different molecular techniques. International Journal of Food Microbiology, 2000, 62(1-2):37-45.
pmid: 11139020
[41]   Yin H, Dong J J, Yu J H, et al. Intracellular metabolite profiling of industrial yeast and the synthesis of flavour compounds in beer. Journal of the Institute of Brewing, 2017, 123(3):328-336.
doi: 10.1002/jib.v123.3
[42]   Marson G V, de Castro R J S, Belleville M P, et al. Spent brewer’s yeast as a source of high added value molecules: a systematic review on its characteristics, processing and potential applications. World Journal of Microbiology & Biotechnology, 2020, 36(7):95.
doi: 10.1007/s11274-020-02866-7
[43]   Rachwał K, Waśko A, Gustaw K, et al. Utilization of brewery wastes in food industry. PeerJ, 2020, 8:e9427.
doi: 10.7717/peerj.9427
[44]   Fleet G H. Wine yeasts for the future. FEMS Yeast Research, 2008, 8(7):979-995.
doi: 10.1111/fyr.2008.8.issue-7
[45]   Reed G, Nagodawithana T W. Technology of yeast usage in winemaking. American Journal of Enology and Viticulture, 1988, 39(1):83-90.
[46]   Schmidt S A, Henschke P A. Production, reactivation and nutrient requirements of active dried yeast in winemaking: theory and practice. Australian Journal of Grape and Wine Research, 2015, 21:651-662.
doi: 10.1111/ajgw.12189
[47]   Rapoport A, Turchetti B, Buzzini P. Application of anhydrobiosis and dehydration of yeasts for non-conventional biotechnological goals. World Journal of Microbiology & Biotechnology, 2016, 32(6):104.
doi: 10.1007/s11274-016-2058-8
[48]   Randez-Gil F, Córcoles-Sáez I, Prieto J A. Genetic and phenotypic characteristics of baker’s yeast: relevance to baking. Annual Review of Food Science and Technology, 2013, 4:191-214.
doi: 10.1146/annurev-food-030212-182609 pmid: 23464571
[49]   Lahue C, Madden A A, Dunn R R, et al. History and domestication of Saccharomyces cerevisiae in bread baking. Frontiers in Genetics, 2020, 11:584718.
doi: 10.3389/fgene.2020.584718
[50]   Chaves-López C, Tofalo R, Serio A, et al. Yeasts from Colombian Kumis as source of peptides with Angiotensin I converting enzyme (ACE) inhibitory activity in milk. International Journal of Food Microbiology, 2012, 159(1):39-46.
doi: 10.1016/j.ijfoodmicro.2012.07.028 pmid: 22938834
[51]   da Silva Araújo V B, de Melo A N F, Costa A G, et al. Followed extraction of β-glucan and mannoprotein from spent brewer’s yeast (Saccharomyces uvarum) and application of the obtained mannoprotein as a stabilizer in mayonnaise. Innovative Food Science & Emerging Technologies, 2014, 23:164-170.
[52]   Borchani C, Fonteyn F, Jamin G, et al. Physical, functional and structural characterization of the cell wall fractions from baker’s yeast Saccharomyces cerevisiae. Food Chemistry, 2016, 194:1149-1155.
doi: 10.1016/j.foodchem.2015.08.106 pmid: 26471666
[53]   Rai A K, Pandey A, Sahoo D. Biotechnological potential of yeasts in functional food industry. Trends in Food Science & Technology, 2019, 83:129-137.
[54]   Raza A, Song H L, Raza J, et al. Formation of beef-like odorants from glutathione-enriched yeast extract via Maillard reaction. Food & Function, 2020, 11(10):8583-8601.
[55]   Ganeva V, Angelova B, Galutzov B, et al. Extraction of proteins and other intracellular bioactive compounds from baker’s yeasts by pulsed electric field treatment. Frontiers in Bioengineering and Biotechnology, 2020, 8:552335.
doi: 10.3389/fbioe.2020.552335
[56]   Zhang Y, Song H L, Li P, et al. Determination of potential off-flavour in yeast extract. LWT - Food Science and Technology, 2017, 82:184-191.
doi: 10.1016/j.lwt.2017.04.030
[57]   Ferreira I M P L V O, Pinho O, Vieira E, et al. Brewer’s Saccharomyces yeast biomass: characteristics and potential applications. Trends in Food Science & Technology, 2010, 21(2):77-84.
[58]   Bozell J J, Petersen G R. Technology development for the production of biobased products from biorefinery carbohydrates:the US Department of Energy’s “Top 10” revisited. Green Chemistry, 2010, 12(4):539.
doi: 10.1039/b922014c
[59]   陈明凯, 叶丽丹, 于洪巍. 代谢改造酿酒酵母合成萜类化合物的研究进展. 生物工程学报, 2021, 37(6):2085-2104.
[59]   Chen M K, Ye L D, Yu H W. Advances in metabolic engineering of Saccharomyces cerevisiae for terpenoids biosynthesis. Chinese Journal of Biotechnology, 2021, 37(6):2085-2104.
[60]   Liu Q L, Liu Y, Chen Y, et al. Current state of aromatics production using yeast: achievements and challenges. Current Opinion in Biotechnology, 2020, 65:65-74.
doi: 10.1016/j.copbio.2020.01.008
[61]   Liao J C, Mi L, Pontrelli S, et al. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nature Reviews Microbiology, 2016, 14(5):288-304.
doi: 10.1038/nrmicro.2016.32
[62]   Porro D, Gasser B, Fossati T, et al. Production of recombinant proteins and metabolites in yeasts. Applied Microbiology and Biotechnology, 2011, 89(4):939-948.
doi: 10.1007/s00253-010-3019-z
[63]   López-Garzón C S, Straathof A J J. Recovery of carboxylic acids produced by fermentation. Biotechnology Advances, 2014, 32(5):873-904.
doi: 10.1016/j.biotechadv.2014.04.002 pmid: 24751382
[64]   Yuzbashev T V, Yuzbasheva E Y, Laptev I A, et al. Is it possible to produce succinic acid at a low pH? Bioengineered Bugs, 2011, 2(2):115-119.
doi: 10.4161/bbug.2.2.14433 pmid: 21637000
[65]   Xu K, Yu L P, Bai W X, et al. Construction of thermo-tolerant yeast based on an artificial protein quality control system (APQC) to improve the production of bio-ethanol. Chemical Engineering Science, 2018, 177:410-416.
doi: 10.1016/j.ces.2017.12.009
[66]   许可, 王靖楠, 李春. 智能抗逆微生物细胞工厂与绿色生物制造. 合成生物学, 2020, 1(4):427-439.
[66]   Xu K, Wang J N, Li C. Intelligent microbial cell factory with tolerance for green biological manufacturing. Synthetic Biology Journal, 2020, 1(4):427-439.
[67]   Xu K, Qin L, Bai W X, et al. Multilevel defense system (MDS) relieves multiple stresses for economically boosting ethanol production of industrial Saccharomyces cerevisiae. ACS Energy Letters, 2020, 5(2):572-582.
doi: 10.1021/acsenergylett.9b02681
[68]   Tomás-Pejó E, Olsson L. Influence of the propagation strategy for obtaining robust Saccharomyces cerevisiae cells that efficiently co-ferment xylose and glucose in lignocellulosic hydrolysates. Microbial Biotechnology, 2015, 8(6):999-1005.
doi: 10.1111/1751-7915.12280 pmid: 25989314
[69]   Xu X, Williams T C, Divne C, et al. Evolutionary engineering in Saccharomyces cerevisiae reveals a TRK1-dependent potassium influx mechanism for propionic acid tolerance. Biotechnology for Biofuels, 2019, 12:97.
doi: 10.1186/s13068-019-1427-6
[70]   Wang Z, Qi Q, Lin Y P, et al. QTL analysis reveals genomic variants linked to high-temperature fermentation performance in the industrial yeast. Biotechnology for Biofuels, 2019, 12:59.
doi: 10.1186/s13068-019-1398-7
[71]   Wei N, Oh E J, Million G, et al. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform. ACS Synthetic Biology, 2015, 4(6):707-713.
doi: 10.1021/sb500364q pmid: 25587748
[72]   Clomburg J M, Crumbley A M, Gonzalez R. Industrial biomanufacturing: the future of chemical production. Science, 2017, 355(6320):aag0804.
doi: 10.1126/science.aag0804
[73]   Majidian P, Tabatabaei M, Zeinolabedini M, et al. Metabolic engineering of microorganisms for biofuel production. Renewable and Sustainable Energy Reviews, 2018, 82:3863-3885.
doi: 10.1016/j.rser.2017.10.085
[74]   Shao Y Y, Lu N, Wu Z F, et al. Creating a functional single-chromosome yeast. Nature, 2018, 560(7718):331-335.
doi: 10.1038/s41586-018-0382-x
[75]   Shen Y, Wang Y, Chen T, et al. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome. Science, 2017, 355(6329):eaaf4791.
doi: 10.1126/science.aaf4791
[76]   Bao Z H, HamediRad M, Xue P, et al. Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision. Nature Biotechnology, 2018, 36(6):505-508.
doi: 10.1038/nbt.4132
[77]   Paramasivan K, Mutturi S. Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae. Critical Reviews in Biotechnology, 2017, 37(8):974-989.
doi: 10.1080/07388551.2017.1299679 pmid: 28427280
[78]   Sun W T, Qin L, Xue H J, et al. Novel trends for producing plant triterpenoids in yeast. Critical Reviews in Biotechnology, 2019, 39(5):618-632.
doi: 10.1080/07388551.2019.1608503
[79]   Luo X Z, Reiter M A, d’Espaux L, et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature, 2019, 567(7746):123-126.
doi: 10.1038/s41586-019-0978-9
[80]   张帆, 王颖, 李春. 单萜类化合物的微生物合成. 生物工程学报, 2022, 2(28):1-16
[80]   Zhang F, Wang Y, Li C. Microbial synthesis of monoterpenoids. Chinese Journal of Biotechnology, 2022, 2(28):1-16.
[81]   Lian J Z, Mishra S, Zhao H M. Recent advances in metabolic engineering of Saccharomyces cerevisiae: new tools and their applications. Metabolic Engineering, 2018, 50:85-108.
doi: 10.1016/j.ymben.2018.04.011
[82]   Carsanba E, Pintado M, Oliveira C. Fermentation strategies for production of pharmaceutical terpenoids in engineered yeast. Pharmaceuticals (Basel, Switzerland), 2021, 14(4):295.
[83]   Meadows A L, Hawkins K M, Tsegaye Y, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature, 2016, 537(7622):694-697.
doi: 10.1038/nature19769
[84]   Lis A V, Schneider K, Weber J, et al. Exploring small-scale chemostats to scale up microbial processes: 3-hydroxypropionic acid production in S. cerevisiae. Microbial Cell Factories, 2019, 18(1):50.
doi: 10.1186/s12934-019-1101-5
[85]   Borodina I, Kildegaard K R, Jensen N B, et al. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine. Metabolic Engineering, 2015, 27:57-64.
doi: S1096-7176(14)00125-6 pmid: 25447643
[86]   Dujon B, Sherman D, Fischer G, et al. Genome evolution in yeasts. Nature, 2004, 430(6995):35-44.
doi: 10.1038/nature02579
[87]   Jandric Z, Schüller C. Stress response in Candida glabrata: pieces of a fragmented picture. Future Microbiology, 2011, 6(12):1475-1484.
doi: 10.2217/fmb.11.131
[88]   Luo Z S, Zeng W Z, Du G C, et al. Enhanced pyruvate production in Candida glabrata by engineering ATP futile cycle system. ACS Synthetic Biology, 2019, 8(4):787-795.
doi: 10.1021/acssynbio.8b00479
[89]   Liu L M, Xu Q L, Li Y, et al. Enhancement of pyruvate production by osmotic-tolerant mutant of Torulopsis glabrata. Biotechnology and Bioengineering, 2007, 97(4):825-832.
doi: 10.1002/bit.21290
[90]   Cok B, Tsiropoulos I, Roes A L, et al. Succinic acid production derived from carbohydrates: an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy. Biofuels, Bioproducts and Biorefining, 2014, 8(1):16-29.
doi: 10.1002/bbb.1427
[91]   Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals. Chemical Reviews, 2007, 107(6):2411-2502.
doi: 10.1021/cr050989d
[92]   Yan D J, Wang C X, Zhou J M, et al. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Bioresource Technology, 2014, 156:232-239.
doi: 10.1016/j.biortech.2014.01.053
[93]   Liu Y Z, Cruz-Morales P, Zargar A, et al. Biofuels for a sustainable future. Cell, 2021, 184(6):1636-1647.
doi: 10.1016/j.cell.2021.01.052
[94]   Cunha J T, Soares P O, Baptista S L, et al. Engineered Saccharomyces cerevisiae for lignocellulosic valorization: a review and perspectives on bioethanol production. Bioengineered, 2020, 11(1):883-903.
doi: 10.1080/21655979.2020.1801178
[95]   Chen Y, Liu Q G, Zhou T, et al. Ethanol production by repeated batch and continuous fermentations by Saccharomyces cerevisiae immobilized in a fibrous bed bioreactor. Journal of Microbiology and Biotechnology, 2013, 23(4):511-517.
doi: 10.4014/jmb
[96]   Liu Q G, Zhao N, Zou Y N, et al. Feasibility of ethanol production from expired rice by surface immobilization technology in a new type of packed bed pilot reactor. Renewable Energy, 2020, 149:321-328.
doi: 10.1016/j.renene.2019.12.031
[97]   Yang L Y, Zheng C, Chen Y, et al. Nitric oxide increases biofilm formation in Saccharomyces cerevisiae by activating the transcriptional factor Mac1p and thereby regulating the transmembrane protein Ctr1. Biotechnology for Biofuels, 2019, 12:30.
doi: 10.1186/s13068-019-1359-1
[98]   Hong K K, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cellular and Molecular Life Sciences, 2012, 69(16):2671-2690.
doi: 10.1007/s00018-012-0945-1
[99]   Ni Y, Sun Z H. Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Applied Microbiology and Biotechnology, 2009, 83(3):415-423.
doi: 10.1007/s00253-009-2003-y
[100]   Abdehagh N, Tezel F H, Thibault J. Separation techniques in butanol production: challenges and developments. Biomass and Bioenergy, 2014, 60:222-246.
doi: 10.1016/j.biombioe.2013.10.003
[101]   Gan L, Chidambaram A, Fonquernie P G, et al. A highly water-stable meta-carborane-based copper metal-organic framework for efficient high-temperature butanol separation. Journal of the American Chemical Society, 2020, 142(18):8299-8311.
doi: 10.1021/jacs.0c01008
[1] CHEN Tao,LIU Zhi-hua,LI Xia,XIE Ze-xiong. Design and Construction of Inhibitor-tolerant Yeast Chassis Cells[J]. China Biotechnology, 2022, 42(1/2): 1-13.
[2] LI Ran,YAN Xiao-guang,LI Wei-guo,LIANG Dong-mei,CAI YIN Qing-ge-le,QIAO Jian-jun. Strategies of Engineering Saccharomyces cerevisiae for High-efficiency Synthesis of Sesquiterpenes[J]. China Biotechnology, 2022, 42(1/2): 14-25.
[3] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.
[4] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[5] ZHAO Yan-shu,ZHANG Jin-hua,SONG Hao. Advances in Production of Monoclonal Antibody and Antibody Fragments in Engineered Prokaryotes and Yeast[J]. China Biotechnology, 2020, 40(8): 74-83.
[6] CEN Qian-hong,GAO Tong,REN Yi,LEI Han. Recombinant Saccharomyces cerevisiae Expressing Helicobacter pylori VacA Protein and Its Immunogenicity Analysis[J]. China Biotechnology, 2020, 40(5): 15-21.
[7] Jun HUANG,Ren-zhi WU,Qi LU,Zhi-long LU. Research Progress on Xylose Transporters of Saccharomyces cerevisiae[J]. China Biotechnology, 2018, 38(2): 109-115.
[8] Wei ZHAO,Jing-da LI,Qing-ping LIU. The Development of Downstream Continuous Purification Technology of Recombinant Protein[J]. China Biotechnology, 2018, 38(10): 74-81.
[9] ZHANG Wei, LIU Duo, LI Bing-zhi, YUAN Ying-jin. Construction and Optimization of p-coumaric Acid Producing Saccharomyces cerevisiae[J]. China Biotechnology, 2017, 37(9): 89-97.
[10] LI Bo, LIANG Nan, LIU Duo, LIU Hong, WANG Ying, XIAO Wen-hai, YAO Ming-dong, YUAN Ying-jin. Metabolic Engineering of Saccharomyces cerevisiae for Production of 8-Dimenthylally Naringenin[J]. China Biotechnology, 2017, 37(9): 71-81.