Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (1/2): 174-181    DOI: 10.13523/j.cb.2107066
Orginal Article     
Applications of Silicon Nanowires in Biosensors:A Review
ZHU Shu1,ZHU Li-feng1,YANG Shuo1,JIN Ran1,WANG Yu-sheng2,*(),SUN Bao-quan2,*()
1 College of Nano Science & Technology, Soochow University, Suzhou 215123, China
2 Institute of Functional Nano & Soft Materials, Soochow University, Suzhou 215123, China
Download: HTML   PDF(3199KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Silicon nanowire (SiNW) is one of the one-dimensional nanomaterials, and has been emerged as the promising sensing materials due to large surface area to volume ratio and high stability. The research of SiNW in sensing field has received wide attention. With the development of SiNW synthesis techniques and modification methods, biosensors based on silicon nanowires are now introduced into many research areas, including the detection of metal ions, early protein biomarkers and drug screening. On the other hand, high biocompatibility and commercial feasibility of silicon nanowires provide the potential to dynamic and real-time monitoring of single cell. Meanwhile, the research on silicon-based biosensors reveals different mechanisms like electrical, optical methods. Sensitivity, specificity and stability are important indicators of sensors to measure the performance during the detection of biochemical substances. Stable chemical properties of silicon nanowires provide an ideal platform for the fabrication of sensors. However, the surface modification remains as one of the challenges when biosensors based on silicon nanowires are used for different application scenarios. Depending on different requirements for sensing, silicon-based biosensors with different sensing mechanisms have been proposed. In terms of biosensors based on electrical signals, SiNW field-effect transistor (SiNW-FET) has been widely studied, which achieves ultra-sensitive detection of target substances by detecting the output electrical signal of sensor through the conductivity change of nanowire induced by surface charge density. Among biosensors based on optical signals, SiNW-based fluorescent sensor achieves detection by measuring the change of fluorescence intensity or wavelength, enabling fast and convenient detection. In this paper, the applications of silicon nanowires in biosensors are summarized, and the sensing mechanisms of SiNW-FET and SiNW-based fluorescent sensor are discussed. Finally, the future research and development of silicon nanowires in biosensors are prospected.



Key wordsSilicon nanowire      Biosensor      Field effect transistor      Fluorescent sensor     
Received: 30 July 2021      Published: 03 March 2022
ZTFLH:  TB383  
Corresponding Authors: Yu-sheng WANG,Bao-quan SUN     E-mail: yushengwang@suda.edu.cn;bqsun@suda.edu.cn
Cite this article:

ZHU Shu,ZHU Li-feng,YANG Shuo,JIN Ran,WANG Yu-sheng,SUN Bao-quan. Applications of Silicon Nanowires in Biosensors:A Review. China Biotechnology, 2022, 42(1/2): 174-181.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2107066     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I1/2/174

Fig.1 Scanning electron microscope morphology of a silicon nanowire array (a) The cross-sectional SEM image (b) The top-view SEM image
Fig.2 Schematic illustrating the conversion of a NW-FET into NW nano sensors for sensing[9]
传感模式 底物存在形式 目标物质 最低检测限/(nmol/L) 线性范围/(nmol/L) 参考文献
荧光猝灭 底物修饰的硅纳米线 Cu2+及复合Cu2+ 31 50~400 [28]
荧光猝灭 底物修饰的硅纳米线 Cu2+ 10 [46]
荧光增强 底物分子 Cu2+ 25 0~25 000 [47]
比率荧光 底物分子 Cu2+ 20 100~20 000 [48]
荧光猝灭 底物修饰的硅纳米线 Hg2+ 0.005 0.005~5 [38]
荧光猝灭 底物修饰的量子点 Hg2+ 1.8 5~41 000 [49]
荧光猝灭 底物修饰的纳米颗粒 Hg2+ 60 200~20 000 [50]
Table 1 Selected examples of fluorescent sensors for detecting metal ions with performance
Fig.3 The interaction between modified SiNWs and complexed Cu2+ (a) The diagram of interaction process (b) The fluorescence spectra with different concentration of Cu2+
Fig.4 The fluorescent images of modified SiNWs with Ca2+ (a) Before the addition of 500 μmol/L Ca2+ in the buffer (b) After the addition of 500 μmol/L Ca2+ in the buffer
[1]   Farré M, Barceló D. Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. TrAC Trends in Analytical Chemistry, 2003, 22(5):299-310.
doi: 10.1016/S0165-9936(03)00504-1
[2]   Malmqvist M. Biospecific interaction analysis using biosensor technology. Nature, 1993, 361(6408):186-187.
doi: 10.1038/361186a0
[3]   Viswanathan S, Radecka H, Radecki J. Electrochemical biosensors for food analysis. Monatshefte Für Chemie - Chemical Monthly, 2009, 140(8):891-899.
doi: 10.1007/s00706-009-0143-5
[4]   Li B R, Hsieh Y J, Chen Y X, et al. An ultrasensitive nanowire-transistor biosensor for detecting dopamine release from living PC12 cells under hypoxic stimulation. Journal of the American Chemical Society, 2013, 135(43):16034-16037.
doi: 10.1021/ja408485m
[5]   Qian L, Mao J F, Tian X Q, et al. In situ synthesis of CuS nanotubes on Cu electrode for sensitive nonenzymatic glucose sensor. Sensors and Actuators B: Chemical, 2013, 176:952-959.
doi: 10.1016/j.snb.2012.09.076
[6]   Stern E, Vacic A, Rajan N K, et al. Label-free biomarker detection from whole blood. Nature Nanotechnology, 2010, 5(2):138-142.
doi: 10.1038/nnano.2009.353 pmid: 20010825
[7]   Zhang G J, Ning Y. Silicon nanowire biosensor and its applications in disease diagnostics: a review. Analytica Chimica Acta, 2012, 749:1-15.
doi: 10.1016/j.aca.2012.08.035
[8]   Gao A R, Chen S X, Wang Y L, et al. Silicon nanowire field-effect-transistor-based biosensor for biomedical applications. Sensors and Materials, 2018, 30(8):1619.
doi: 10.18494/SAM.2018.1829
[9]   Smith R, Geary S M, Salem A K. Silicon nanowires and their impact on cancer detection and monitoring. ACS Applied Nano Materials, 2020, 3(9):8522-8536.
doi: 10.1021/acsanm.0c01572
[10]   Cui Y, Wei Q, Park H, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293(5533):1289-1292.
doi: 10.1126/science.1062711 pmid: 11509722
[11]   Anand A, Liu C R, Chou A C, et al. Detection of K+ efflux from stimulated cortical neurons by an aptamer-modified silicon nanowire field-effect transistor. ACS Sensors, 2017, 2(1):69-79.
doi: 10.1021/acssensors.6b00505
[12]   Curreli M, Zhang R, Ishikawa F N, et al. Real-time, label-free detection of biological entities using nanowire-based FETs. IEEE Transactions on Nanotechnology, 2008, 7(6):651-667.
doi: 10.1109/TNANO.2008.2006165
[13]   Wang J. SURVEY AND SUMMARY:From DNA biosensors to gene chips. Nucleic Acids Research, 2000, 28(16):3011-3016.
pmid: 10931914
[14]   Hahm J I, Lieber C M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Letters, 2004, 4(1):51-54.
doi: 10.1021/nl034853b
[15]   Adam T, Hashim U. Highly sensitive silicon nanowire biosensor with novel liquid gate control for detection of specific single-stranded DNA molecules. Biosensors and Bioelectronics, 2015, 67:656-661.
doi: 10.1016/j.bios.2014.10.005
[16]   Ivanov Y, Pleshakova T, Malsagova K, et al. Detection of marker miRNAs, associated with prostate cancer, in plasma using SOI-NW biosensor in direct and inversion modes. Sensors, 2019, 19(23):5248.
doi: 10.3390/s19235248
[17]   Patolsky F, Zheng G, Hayden O, et al. Electrical detection of single viruses. PNAS, 2004, 101(39):14017-14022.
doi: 10.1073/pnas.0406159101
[18]   Chiang P L, Chou T C, Wu T H, et al. Nanowire transistor-based ultrasensitive virus detection with reversible surface functionalization. Chemistry - an Asian Journal, 2012, 7(9):2073-2079.
doi: 10.1002/asia.201200222
[19]   Malsagova K A, Pleshakova T O, Galiullin R A, et al. Ultrasensitive nanowire-based detection of HCVcoreAg in the serum using a microwave generator. Analytical Methods, 2018, 10(23):2740-2749.
doi: 10.1039/C8AY00495A
[20]   Zheng G F, Patolsky F, Cui Y, et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology, 2005, 23(10):1294-1301.
doi: 10.1038/nbt1138
[21]   Zheng G F, Gao X, Lieber C M. Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Letters, 2010, 10(8):3179-3183.
doi: 10.1021/nl1020975
[22]   Zhang G J, Huang M J, Ang J J, et al. Label-free detection of carbohydrate-protein interactions using nanoscale field-effect transistor biosensors. Analytical Chemistry, 2013, 85(9):4392-4397.
doi: 10.1021/ac3036525
[23]   Stern E, Wagner R, Sigworth F J, et al. Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Letters, 2007, 7(11):3405-3409.
doi: 10.1021/nl071792z pmid: 17914853
[24]   Vu C A, Pan P H, Yang Y S, et al. Combination of aptamer amplifier and antigen-binding fragment probe as a novel strategy to improve detection limit of silicon nanowire field-effect transistor immunosensors. Sensors, 2021, 21(2):650.
doi: 10.3390/s21020650
[25]   Quang D T, Kim J S. Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chemical Reviews, 2010, 110(10):6280-6301.
doi: 10.1021/cr100154p pmid: 20726526
[26]   Alhmoud H, Brodoceanu D, Elnathan R, et al. A MACEing silicon: Towards single-step etching of defined porous nanostructures for biomedicine. Progress in Materials Science, 2021, 116:100636.
doi: 10.1016/j.pmatsci.2019.100636
[27]   Yan Q T, Fang L P, Wei J Y, et al. Silicon nanowires enhanced proliferation and neuronal differentiation of neural stem cell with vertically surface microenvironment. Journal of Biomaterials Science, Polymer Edition, 2017, 28(13):1394-1407.
doi: 10.1080/09205063.2017.1329888
[28]   Miao R, Mu L X, Zhang H Y, et al. Silicon nanowire-based fluorescent nanosensor for complexed Cu2+ and its bioapplications. Nano Letters, 2014, 14(6):3124-3129.
doi: 10.1021/nl500276x
[29]   Cao X X, Mu L X, Chen M, et al. Silicon nanowires: single silicon nanowire-based fluorescent sensor for endogenous hypochlorite in an individual cell. Advanced Biosystems, 2018, 2(12):1870112.
doi: 10.1002/adbi.v2.12
[30]   Xu W F, Mu L X, Miao R, et al. Fluorescence sensor for Cu(II) based on R6G derivatives modified silicon nanowires. Journal of Luminescence, 2011, 131(12):2616-2620.
doi: 10.1016/j.jlumin.2011.06.048
[31]   Zhang T P, Mu L X, She G W, et al. 2×2 Fluorescent sensor array based on SiNWs for analysis of Pb2+, Cd2+, Cr3+ and Hg2+. Journal of Luminescence, 2019, 209:267-273.
doi: 10.1016/j.jlumin.2019.01.055
[32]   Wang S T, Zhang Y L, Ning Y, et al. A WS2 nanosheet-based platform for fluorescent DNA detection via PNA-DNA hybridization. The Analyst, 2015, 140(2):434-439.
doi: 10.1039/C4AN01738B
[33]   Yang R H, Jin J Y, Chen Y, et al. Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization. Journal of the American Chemical Society, 2008, 130(26):8351-8358.
doi: 10.1021/ja800604z
[34]   Guo S, Du D X, Tang L N, et al. PNA-assembled graphene oxide for sensitive and selective detection of DNA. The Analyst, 2013, 138(11):3216-3220.
doi: 10.1039/c3an00266g
[35]   Song S P, Liang Z Q, Zhang J, et al. Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. Angewandte Chemie (International Ed in English), 2009, 48(46):8670-8674.
doi: 10.1002/anie.v48:46
[36]   Huang Y X, Shi Y M, Yang H Y, et al. A novel single-layered MoS2 nanosheet based microfluidic biosensor for ultrasensitive detection of DNA. Nanoscale, 2015, 7(6):2245-2249.
doi: 10.1039/C4NR07162J
[37]   Su S, Wei X P, Zhong Y L, et al. Silicon nanowire-based molecular beacons for high-sensitivity and sequence-specific DNA multiplexed analysis. ACS Nano, 2012, 6(3):2582-2590.
doi: 10.1021/nn2050449
[38]   Xie J, Jiang X X, Zhong Y L, et al. Stem-loop DNA-assisted silicon nanowires-based biochemical sensors with ultra-high sensitivity, specificity, and multiplexing capability. Nanoscale, 2014, 6(15):9215-9222.
doi: 10.1039/C4NR01097C
[39]   Zhang G J, Chua J H, Chee R E, et al. Highly sensitive measurements of PNA-DNA hybridization using oxide-etched silicon nanowire biosensors. Biosensors and Bioelectronics, 2008, 23(11):1701-1707.
doi: 10.1016/j.bios.2008.02.006
[40]   Song S P, Qin Y, He Y, et al. Functional nanoprobes for ultrasensitive detection of biomolecules. Chemical Society Reviews, 2010, 39(11):4234-4243.
doi: 10.1039/c000682n
[41]   Serre P, Ternon C, Stambouli V, et al. Fabrication of silicon nanowire networks for biological sensing. Sensors and Actuators B: Chemical, 2013, 182:390-395.
doi: 10.1016/j.snb.2013.03.022
[42]   Veerbeek J, Steen R, Vijselaar W, et al. Selective functionalization with PNA of silicon nanowires on silicon oxide substrates. Langmuir, 2018, 34(38):11395-11404.
doi: 10.1021/acs.langmuir.8b02401 pmid: 30179484
[43]   Xing Y, Zhou Y, Fan L, et al. Construction strategy for ratiometric fluorescent probe based on Janus silica nanoparticles as a platform toward intracellular pH detection. Talanta, 2019, 205:120021.
doi: 10.1016/j.talanta.2019.06.021
[44]   Lin B X, Zhang T Y, Xin X L, et al. Europium(III) modified silicone nanoparticles for ultrasensitive visual determination of tetracyclines by employing a fluorescence color switch. Microchimica Acta, 2019, 186(7):1-10.
doi: 10.1007/s00604-018-3127-5
[45]   Chen M, Mu L X, Wang S, et al. A single silicon nanowire-based ratiometric biosensor for Ca2+ at various locations in a neuron. ACS Chemical Neuroscience, 2020, 11(9):1283-1290.
doi: 10.1021/acschemneuro.0c00041 pmid: 32293869
[46]   Mu L, Shi W, Chang J C, et al. Silicon nanowires-based fluorescence sensor for Cu(II). Nano Letters, 2008, 8(1):104-109.
doi: 10.1021/nl072164k
[47]   Li Z, Xu Y Q, Xu H D, et al. A dicyanomethylene-4H-pyran-based fluorescence probe with high selectivity and sensitivity for detecting copper (II) and its bioimaging in living cells and tissue. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 244:118819.
doi: 10.1016/j.saa.2020.118819
[48]   Wu Y S, Li C Y, Li Y F, et al. Development of a simple pyrene-based ratiometric fluorescent chemosensor for copper ion in living cells. Sensors and Actuators B: Chemical, 2016, 222:1226-1232.
doi: 10.1016/j.snb.2015.06.151
[49]   Guo X R, Huang J Z, Wei Y B, et al. Fast and selective detection of mercury ions in environmental water by paper-based fluorescent sensor using boronic acid functionalized MoS2 quantum dots. Journal of Hazardous Materials, 2020, 381:120969.
doi: 10.1016/j.jhazmat.2019.120969
[50]   Liu Y, Ouyang Q, Li H H, et al. Turn-on fluoresence sensor for Hg2+ in food based on FRET between aptamers-functionalized upconversion nanoparticles and gold nanoparticles. Journal of Agricultural and Food Chemistry, 2018, 66(24):6188-6195.
doi: 10.1021/acs.jafc.8b00546
[51]   Abdul Rashid J I, Abdullah J, Yusof N A, et al. The development of silicon nanowire as sensing material and its applications. Journal of Nanomaterials, 2013, 2013:1-16.
[52]   Han S W, Lee S, Hong J, et al. Mutiscale substrates based on hydrogel-incorporated silicon nanowires for protein patterning and microarray-based immunoassays. Biosensors and Bioelectronics, 2013, 45:129-135.
doi: 10.1016/j.bios.2013.01.062
[53]   Wang H M, Mu L X, She G W, et al. Fluorescent biosensor for alkaline phosphatase based on fluorescein derivatives modified silicon nanowires. Sensors and Actuators B: Chemical, 2014, 203:774-781.
doi: 10.1016/j.snb.2014.07.047
[1] XU Wen-juan,SONG Dan,CHEN Dan,LONG Hui,CHEN Yu-bao,LONG Feng. Research Progress of Pathogen Detection Technologies Based on CRISPR/CAS Biosensor[J]. China Biotechnology, 2021, 41(8): 67-74.
[2] TANG Meng-tong,WANG Zhao-guan,LI Jiao-jiao,QI Hao. Application of Terminal Deoxynucleotidyl Transferase in Biosensors and Nucleic Acid Synthesis[J]. China Biotechnology, 2021, 41(5): 51-64.
[3] ZHANG Zheng-yan,CHEN Yu,SONG Li-jie,SU Zheng-quan,ZHANG Hai-yan. Advances in the Application of Field Effect Transistor Biosensor in Biomedical Detection[J]. China Biotechnology, 2021, 41(10): 73-88.
[4] HAO Xiao-ting,LIU Jun-jie,DENG Yu-lin,ZHANG Yong-qian. Radiation Biosensor Based on Promoter of SOS Reaction and Oxidative Stress Reaction[J]. China Biotechnology, 2020, 40(7): 30-40.
[5] CHENG Ping,ZHANG Yang-zi,MA Xuan,CHEN Xu,ZHU Bao-qing,XU Wen-tao. Properties and Applications of Stimuli-Responsive DNA Hydrogels[J]. China Biotechnology, 2020, 40(3): 132-143.
[6] LI Hang,WANG Tong. Research Progress on Overcoming Debye Screening Effect of Silicon Nanowire Field-effect Transistor Biosensor[J]. China Biotechnology, 2019, 39(10): 112-116.
[7] YI Yu, WANG Min-jun, MEI Jian-feng, CHEN Jian-shu, ZHANG Yan-lu, YING Guo-qing. Construction and Characterization of Electrochemical Biosensor based on Endotoxin Aptameer[J]. China Biotechnology, 2017, 37(8): 46-50.
[8] WEN Guo-xia, HUANG Zi-hao, TAN Jun-jie, KAN Nai-peng, LING Jing-yi, ZHANG Xia, LIU Gang, CHEN Hui-peng. Construction of XylR-Pugene Lines in Escherichia coli to Detect 2,4,6-trinitrotoluene[J]. China Biotechnology, 2017, 37(7): 105-114.
[9] WANG Ping, MAO Hong-ju. The Application of Nanomaterials in Biomedical Detection[J]. China Biotechnology, 2011, 31(9): 88-95.
[10] DENG Han-chao, YIN Chang-cheng, LIU Guo-zhen, LIN Jian-rong, DENG Ping-jian. Progress in Nucleic Acid Detection Techniques for Genetically Modified Organisms[J]. China Biotechnology, 2011, 31(01): 86-95.
[11] ZHOU Li-hong, CHEN Zi-qiang, HUANG Guo-you, ZHAI Xiao, CHEN Yong-mei, XU Fong, LU Tian-jian. The Application of Cell Bioprinting[J]. China Biotechnology, 2010, 30(12): 95-104.
[12] ZHENG Hui, LI Qiu-Shun, GAO An-Heng, ZHANG Li-Qun, MA Yao-Hong, SHI Jian-Guo. Key Technologies and Progress of Amperometric Biosensors Based on Dehydrogenases[J]. China Biotechnology, 2010, 30(09): 118-123.
[13] Hao Jiang Hongmin Zhou Leike Li Linjing Bai Cunxian Song Zhaofeng Luo. Methods for Regeneration of Five Kinds of SPR Sensor Chips and Their Applications[J]. China Biotechnology, 2009, 29(01): 44-49.
[14] 尹娟 YIN Juan. Research Progress on Determination of Cellulase Activity and Gene Expression by Biosensor[J]. China Biotechnology, 2009, 29(01): 86-92.
[15] . A Promising Biological Detection Technology-Biosensor[J]. China Biotechnology, 2008, 28(5): 141-147.