Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (1/2): 14-25    DOI: 10.13523/j.cb.2110033
Orginal Article     
Strategies of Engineering Saccharomyces cerevisiae for High-efficiency Synthesis of Sesquiterpenes
LI Ran1,YAN Xiao-guang1,LI Wei-guo1,LIANG Dong-mei2,CAI YIN Qing-ge-le1,QIAO Jian-jun1,2,**()
1 School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2 Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
Download: HTML   PDF(2587KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Sesquiterpenes, which belong to terpenes and have strong fragrance and excellent biological activity, can be used in the synthesis of flavors, biofuels and pharmaceuticals. At present, the common methods of obtaining sesquiterpenes in industry are chemical synthesis and plant extraction. Due to the inevitable problems of low yield, high cost and large pollution in common methods, researchers begin to pay attention to the research of microbial synthesis of sesquiterpenes and used metabolic engineering, enzyme engineering and methods of synthetic biology to construct microbial cell factories of Saccharomyces cerevisiae, which can produce various sesquiterpenes. The sesquiterpene synthesis pathway has been introduced and analyzed in the paper. Focusing on the accumulation of the acetyl-CoA, the improvement and modification of the mevalonate pathway, and the inhibition of competitive pathways, specific strategies and relative examples about the improvement and modification of the sesquiterpene synthesis pathway are reviewed. The research progress about the characterization and mutation of sesquiterpene synthases in recent years is summarized. Finally, the prospect and suggestions are proposed to improve the efficiency of sesquiterpene synthesis in Saccharomyces cerevisiae.



Key wordsSesquiterpene      Microbial synthesis      Saccharomyces cerevisiae     
Received: 22 October 2021      Published: 03 March 2022
ZTFLH:  Q819  
Corresponding Authors: Jian-jun QIAO     E-mail: jianjunq@tju.edu.cn
Cite this article:

LI Ran,YAN Xiao-guang,LI Wei-guo,LIANG Dong-mei,CAI YIN Qing-ge-le,QIAO Jian-jun. Strategies of Engineering Saccharomyces cerevisiae for High-efficiency Synthesis of Sesquiterpenes. China Biotechnology, 2022, 42(1/2): 14-25.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2110033     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I1/2/14

倍半萜 主要改造策略 产量 参考文献
α-法尼烯 筛选和表达来自大豆的α-法尼烯合成酶Fsso;采用GAL系列启动子增强Fsso和HMGR的表达;敲除DPP1 5 L发酵罐产量达
10.4 g/L
[13]
α-法尼烯 表达来自L. mesenteroides的xPK和来自C. kluyveri的PTA;表达来自D. zeae的乙酰乙醛脱氢酶和来自S.pomeroyi的NADH-HMGR;敲除RHR2 200 t工业发酵罐产量达到130 g/L [14]
反式橙花叔醇 鉴定和表达来自C. angulatus的反式橙化叔醇合成酶CaNES;采用GAL2启动子过表达UPC2-1;敲除GAL80;启动子PERG9替换成PHXT1 5 L发酵罐产量达
7.01 g/L
[15]
α-蛇麻烯 利用ePTS1将来自Z. zerumbet的α-蛇麻烯合成酶ZSS1定位到过氧化物酶体;向过氧化物酶体引入MVA途径中的8个酶并使用GAL系列启动子增强酶的表达;敲除GAL80或将启动子PGAL80替换成PHXT1 5 L发酵罐产量达
1 726.78 mg/L
[16]
吉玛烯A 筛选和表达了来自不同物种的9个吉玛烯A合成酶;过表达tHMGR、ERG20和UPC2-1;过表达来自A. variabilis的吉玛烯A合成酶的突变体AvGASF23W;敲除DPP1和LPP1;启动子PERG9替换成PHXT1 摇瓶发酵产量达
309.8 mg/L
[17]
没药烯 过表达tHMGR、ERG20和UPC2-1;下调角鲨烯合成酶ERG9的表达;表达来自A. grandis的没药烯合成酶AgBIS 摇瓶发酵产量达
(994±241) mg/L
[5]
紫穗槐二烯 过表达两个磷酸果糖激酶的突变体PFK1S724D、PFK2S718D以及6-磷酸葡萄糖脱氢酶ZWF1;过表达ERG10、tHMGR和紫穗槐二烯合成酶;启动子PERG9替换成PSYH1 摇瓶发酵产量达497 mg/L [18]
广藿香醇 过表达POS5、ACS1、ERG11、ERG24和MVA途径中涉及的所有酶;过表达由广藿香醇合成酶与法尼基焦磷酸合成酶组成的融合蛋白;敲除YJ064W、YPL062W以及ROX1;启动子PERG9替换成PHXT1 5 L发酵罐产量达
1 632 mg/L
[19]
Table 1 Engineering strategies of Saccharomyces cerevisiae for the synthesis of different sesquiterpenes
Fig.1 Sesquiterpene biosynthetic pathway in Saccharomyces cerevisiae Key enzymes are shown:PDH-complex, Pyruvate dehydrogenase complex; PDC, Pyruvate decarboxylase; ALD, Acetaldehyde dehydrogenase; ACS, Acetyl-CoA synthase; ERG10, Acetoacetyl-CoA thiolase; HMGS, Hydroxymethylglutaryl-CoA synthase; HMGR, 3-Hydroxy-3-methylglutaryl-CoA reductase; ERG12, Mevalonate kinase; ERG8, Phosphomevalonate kinase; MVD1, Diphosphomevalonate decarboxylase; IDI1, Isopentenyl diphosphate isomerase; ERG20, Farnesyl diphosphate synthase; STS, Sesquiterpene synthase; LPP1, Lipid phosphate phosphatase; DPP1, Diacylglycerol pyrophosphate phosphatase; ERG9, Squalene synthase
Fig.2 Catalytic process of sesquiterpene synthase
[1]   Mai J, Li W J, Ledesma-Amaro R, et al. Engineering plant sesquiterpene synthesis into yeasts: a review. Journal of Agricultural and Food Chemistry, 2021, 69(33):9498-9510.
doi: 10.1021/acs.jafc.1c03864
[2]   Ferreira F M, Palmeira C M, Oliveira M M, et al. Nerolidol effects on mitochondrial and cellular energetics. Toxicology in Vitro, 2012, 26(2):189-196.
doi: 10.1016/j.tiv.2011.11.009
[3]   McGinty D, Letizia C S, Api A M. Addendum to fragrance material review on nerolidol (isomer unspecified). Food and Chemical Toxicology, 2010, 48:S43-S45.
doi: 10.1016/j.fct.2009.11.008
[4]   赵雅坤. 代谢工程改造解脂耶式酵母生物合成红没药烯的研究. 天津: 天津科技大学, 2020.
[4]   Zhao Y K. Metabolic engineering of the oleaginous yeast Yarrowia lipolytica for microbial synthesis of bisabolene. Tianjin: Tianjin University of Science and Technology, 2020.
[5]   Peralta-Yahya P P, Ouellet M, Chan R, et al. Identification and microbial production of a terpene-based advanced biofuel. Nature Communications, 2011, 2:483.
doi: 10.1038/ncomms1494 pmid: 21952217
[6]   陈伟. α-红没药醇对人肝癌HepG2细胞凋亡作用的研究. 武汉: 武汉大学, 2010.
[6]   Chen W. Study on the apoptotic effect of α-bisabolol on human hepatoma HepG2 cell line. Wuhan: Wuhan University, 2010.
[7]   Buijs N A, Siewers V, Nielsen J. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Current Opinion in Chemical Biology, 2013, 17(3):480-488.
doi: 10.1016/j.cbpa.2013.03.036
[8]   Lee K S, Kim G H, Kim H H, et al. Volatile compounds of Panax ginseng C.A. Meyer cultured with different cultivation methods. Journal of Food Science, 2012, 77(7):C805-C810.
doi: 10.1111/jfds.2012.77.issue-7
[9]   Jung J I, Kim E J, Kwon G T, et al. Β-Caryophyllene potently inhibits solid tumor growth and lymph node metastasis of B16F10 melanoma cells in high-fat diet-induced obese C57BL/6N mice. Carcinogenesis, 2015, 36(9):1028-1039.
doi: 10.1093/carcin/bgv076 pmid: 26025912
[10]   di Sotto A, Mancinelli R, Gullì M, et al. Chemopreventive potential of caryophyllane sesquiterpenes: an overview of preliminary evidence. Cancers, 2020, 12(10):3034.
doi: 10.3390/cancers12103034
[11]   Harvey B G, Merriman W W, Koontz T A. High-density renewable diesel and jet fuels prepared from multicyclic sesquiterpanes and a 1-hexene-derived synthetic paraffinic kerosene. Energy & Fuels, 2015, 29(4):2431-2436.
doi: 10.1021/ef5027746
[12]   George K W, Alonso-Gutierrez J, Keasling J D, et al. Isoprenoid drugs, biofuels, and chemicals:artemisinin, farnesene, and beyond. Advances in Biochemical Engineering/ Biotechnology, 2015, 148:355-389.
[13]   Wang J H, Jiang W, Liang C J, et al. Overproduction of α-farnesene in Saccharomyces cerevisiae by farnesene synthase screening and metabolic engineering. Journal of Agricultural and Food Chemistry, 2021, 69(10):3103-3113.
doi: 10.1021/acs.jafc.1c00008
[14]   Meadows A L, Hawkins K M, Tsegaye Y, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature, 2016, 537(7622):694-697.
doi: 10.1038/nature19769
[15]   Li W G, Yan X G, Zhang Y T, et al. Characterization of trans-nerolidol synthase from Celastrus angulatus maxim and production of trans-nerolidol in engineered Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 2021, 69(7):2236-2244.
doi: 10.1021/acs.jafc.0c06084
[16]   Zhang C B, Li M, Zhao G R, et al. Harnessing yeast peroxisomes and cytosol acetyl-CoA for sesquiterpene α-humulene production. Journal of Agricultural and Food Chemistry, 2020, 68(5):1382-1389.
doi: 10.1021/acs.jafc.9b07290
[17]   Zhang W X, Guo J Q, Wang Z, et al. Improved production of germacrene A, a direct precursor of ?-elemene, in engineered Saccharomyces cerevisiae by expressing a cyanobacterial germacrene A synthase. Microbial Cell Factories, 2021, 20(1):7.
doi: 10.1186/s12934-020-01500-3
[18]   Kwak S, Yun E J, Lane S, et al. Redirection of the glycolytic flux enhances isoprenoid production in Saccharomyces cerevisiae. Biotechnology Journal, 2020, 15(2):e1900173.
[19]   Liu M, Lin Y C, Guo J J, et al. High-level production of sesquiterpene patchoulol in Saccharomyces cerevisiae. ACS Synthetic Biology, 2021, 10(1):158-172.
doi: 10.1021/acssynbio.0c00521
[20]   Heyland J, Fu J N, Blank L M. Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae. Microbiology (Reading, England), 2009, 155(Pt 12):3827-3837.
doi: 10.1099/mic.0.030213-0
[21]   Starai V J, Escalante-Semerena J C. Acetyl-coenzyme A synthetase (AMP forming). Cellular and Molecular Life Sciences CMLS, 2004, 61(16):2020-2030.
[22]   Shiba Y, Paradise E M, Kirby J, et al. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metabolic Engineering, 2007, 9(2):160-168.
doi: 10.1016/j.ymben.2006.10.005
[23]   Wegner S A, Chen J M, Ip S S, et al. Engineering acetyl-CoA supply and ERG9 repression to enhance mevalonate production in Saccharomyces cerevisiae. Journal of Industrial Microbiology and Biotechnology, 2021, 48(9-10):kuab050.
doi: 10.1093/jimb/kuab050
[24]   Shi W Q, Li J, Chen Y F, et al. Metabolic engineering of Saccharomyces cerevisiae for ethyl acetate biosynthesis. ACS Synthetic Biology, 2021, 10(3):495-504.
doi: 10.1021/acssynbio.0c00446
[25]   Chen Y, Daviet L, Schalk M, et al. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metabolic Engineering, 2013, 15:48-54.
doi: 10.1016/j.ymben.2012.11.002 pmid: 23164578
[26]   Ratledge C, Wynn J P. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in Applied Microbiology, 2002, 51:1-51.
pmid: 12236054
[27]   Rodriguez S, Denby C M, van Vu T, et al. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae. Microbial Cell Factories, 2016, 15:48.
doi: 10.1186/s12934-016-0447-1 pmid: 26939608
[28]   Cardenas J, da Silva N A. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Metabolic Engineering, 2016, 36:80-89.
doi: S1096-7176(16)00030-6 pmid: 26969250
[29]   Zhang Y M, Su M, Qin N, et al. Expressing a cytosolic pyruvate dehydrogenase complex to increase free fatty acid production in Saccharomyces cerevisiae. Microbial Cell Factories, 2020, 19(1):226.
doi: 10.1186/s12934-020-01493-z
[30]   Schadeweg V, Boles E. N-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA. Biotechnology for Biofuels, 2016, 9:44.
doi: 10.1186/s13068-016-0456-7 pmid: 26913077
[31]   Sandoval C M, Ayson M, Moss N, et al. Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae. Metabolic Engineering, 2014, 25:215-226.
doi: 10.1016/j.ymben.2014.07.006 pmid: 25076380
[32]   Polakowski T, Stahl U, Lang C. Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Applied Microbiology and Biotechnology, 1998, 49(1):66-71.
pmid: 9487712
[33]   Hampton R Y, Rine J. Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic Reticulum, in yeast. The Journal of Cell Biology, 1994, 125(2):299-312.
doi: 10.1083/jcb.125.2.299
[34]   Donald K A, Hampton R Y, Fritz I B. Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 1997, 63(9):3341-3344.
doi: 10.1128/aem.63.9.3341-3344.1997 pmid: 9292983
[35]   Huh W K, Falvo J V, Gerke L C, et al. Global analysis of protein localization in budding yeast. Nature, 2003, 425(6959):686-691.
doi: 10.1038/nature02026
[36]   Ignea C, Cvetkovic I, Loupassaki S, et al. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids. Microbial Cell Factories, 2011, 10:4.
doi: 10.1186/1475-2859-10-4
[37]   Asadollahi M A, Maury J, Schalk M, et al. Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2010, 106(1):86-96.
doi: 10.1002/bit.22668 pmid: 20091767
[38]   Steussy C N, Robison A D, Tetrick A M, et al. A structural limitation on enzyme activity: the case of HMG-CoA synthase. Biochemistry, 2006, 45(48):14407-14414.
pmid: 17128980
[39]   Pitera D J, Paddon C J, Newman J D, et al. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metabolic Engineering, 2007, 9(2):193-207.
doi: 10.1016/j.ymben.2006.11.002
[40]   Paramasivan K, Mutturi S. Regeneration of NADPH coupled with HMG-CoA reductase activity increases squalene synthesis in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 2017, 65(37):8162-8170.
doi: 10.1021/acs.jafc.7b02945 pmid: 28845666
[41]   Chen H L, Li M J, Liu C Q, et al. Enhancement of the catalytic activity of Isopentenyl diphosphate isomerase (IDI) from Saccharomyces cerevisiae through random and site-directed mutagenesis. Microbial Cell Factories, 2018, 17(1):65.
doi: 10.1186/s12934-018-0913-z
[42]   Hu Z H, Li H X, Weng Y R, et al. Improve the production of d-limonene by regulating the mevalonate pathway of Saccharomyces cerevisiae during alcoholic beverage fermentation. Journal of Industrial Microbiology and Biotechnology, 2020, 47(12):1083-1097.
doi: 10.1007/s10295-020-02329-w
[43]   Ma B, Liu M, Li Z H, et al. Significantly enhanced production of patchoulol in metabolically engineered Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 2019, 67(31):8590-8598.
doi: 10.1021/acs.jafc.9b03456
[44]   Tippmann S, Anfelt J, David F, et al. Affibody scaffolds improve sesquiterpene production in Saccharomyces cerevisiae. ACS Synthetic Biology, 2017, 6(1):19-28.
doi: 10.1021/acssynbio.6b00109 pmid: 27560952
[45]   Chatzivasileiou A O, Ward V, Edgar S M, et al. Two-step pathway for isoprenoid synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(2):506-511.
[46]   Liu H, Chen S L, Xu J Z, et al. Dual regulation of cytoplasm and peroxisomes for improved Α-farnesene production in recombinant Pichia pastoris. ACS Synthetic Biology, 2021, 10(6):1563-1573.
doi: 10.1021/acssynbio.1c00186
[47]   Clomburg J M, Qian S, Tan Z G, et al. The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(26):12810-12815.
[48]   Scalcinati G, Partow S, Siewers V, et al. Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae. Microbial Cell Factories, 2012, 11:117.
doi: 10.1186/1475-2859-11-117 pmid: 22938570
[49]   Asadollahi M A, Maury J, M?ller K, et al. Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnology and Bioengineering, 2008, 99(3):666-677.
pmid: 17705244
[50]   Yuan J F, Ching C B. Dynamic control of ERG9 expression for improved amorpha-4, 11-diene production in Saccharomyces cerevisiae. Microbial Cell Factories, 2015, 14:38.
doi: 10.1186/s12934-015-0220-x
[51]   Callari R, Meier Y, Ravasio D, et al. Dynamic control of ERG20 and ERG9 expression for improved casbene production in Saccharomyces cerevisiae. Frontiers in Bioengineering and Biotechnology, 2018, 6:160.
doi: 10.3389/fbioe.2018.00160
[52]   Shishova E Y, di Costanzo L, Cane D E, et al. X-ray crystal structure of aristolochene synthase from Aspergillus terreus and evolution of templates for the cyclization of farnesyl diphosphate. Biochemistry, 2007, 46(7):1941-1951.
doi: 10.1021/bi0622524
[53]   Shishova E Y, Yu F L, Miller D J, et al. X-ray crystallographic studies of substrate binding to aristolochene synthase suggest a metal ion binding sequence for catalysis. Journal of Biological Chemistry, 2008, 283(22):15431-15439.
doi: 10.1074/jbc.M800659200
[54]   Ban Z N, Qin H, Mitchell A J, et al. Noncatalytic chalcone isomerase-fold proteins in Humulus lupulus are auxiliary components in prenylated flavonoid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(22):E5223-E5232.
[55]   Li W G, Yan X G, Zhang Y T, et al. Characterization of trans-nerolidol synthase from Celastrus angulatus maxim and production of trans-nerolidol in engineered Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 2021, 69(7):2236-2244.
doi: 10.1021/acs.jafc.0c06084
[56]   Li J X, Fang X, Zhao Q, et al. Rational engineering of plasticity residues of sesquiterpene synthases from Artemisia annua: product specificity and catalytic efficiency. The Biochemical Journal, 2013, 451(3):417-426.
doi: 10.1042/BJ20130041
[57]   Fang X, Li J X, Huang J Q, et al. Systematic identification of functional residues of Artemisia annua amorpha-4, 11-diene synthase. The Biochemical Journal, 2017, 474(13):2191-2202.
doi: 10.1042/BCJ20170060
[58]   Shukal S, Chen X X, Zhang C Q. Systematic engineering for high-yield production of viridiflorol and amorphadiene in auxotrophic Escherichia coli. Metabolic Engineering, 2019, 55:170-178.
doi: S1096-7176(19)30215-0 pmid: 31326469
[59]   Yoshikuni Y, Ferrin T E, Keasling J D. Designed divergent evolution of enzyme function. Nature, 2006, 440(7087):1078-1082.
doi: 10.1038/nature04607
[60]   Bogorad I W, Lin T S, Liao J C. Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature, 2013, 502(7473):693-697.
doi: 10.1038/nature12575
[61]   Kocharin K, Siewers V, Nielsen J. Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway. Biotechnology and Bioengineering, 2013, 110(8):2216-2224.
doi: 10.1002/bit.v110.8
[62]   de Jong B W, Shi S B, Siewers V, et al. Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microbial Cell Factories, 2014, 13(1):39.
doi: 10.1186/1475-2859-13-39
[63]   Andersen J L, Flamm C, Merkle D, et al. Chemical transformation motifs: modelling pathways as integer hyperflows. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16(2):510-523.
doi: 10.1109/TCBB.2017.2781724 pmid: 29990045
[64]   Vögeli B, Engilberge S, Girard E, et al. Archaeal acetoacetyl-CoA thiolase/HMG-CoA synthase complex channels the intermediate via a fused CoA-binding site. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(13):3380-3385.
[65]   Casey W M, Keesler G A, Parks L W. Regulation of partitioned sterol biosynthesis in Saccharomyces cerevisiae. Journal of Bacteriology, 1992, 174(22):7283-7288.
pmid: 1429452
[66]   Faulkner A, Chen X M, Rush J, et al. The LPP1 and DPP1 gene products account for most of the isoprenoid phosphate phosphatase activities in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1999, 274(21):14831-14837.
doi: 10.1074/jbc.274.21.14831 pmid: 10329682
[1] CHEN Tao,LIU Zhi-hua,LI Xia,XIE Ze-xiong. Design and Construction of Inhibitor-tolerant Yeast Chassis Cells[J]. China Biotechnology, 2022, 42(1/2): 1-13.
[2] ZHANG Yao,QIU Xiao-man,SUN Hao,GUO Lei,HONG Hou-sheng. The Industrial Applications of Saccharomyces cerevisiae[J]. China Biotechnology, 2022, 42(1/2): 26-36.
[3] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.
[4] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[5] CEN Qian-hong,GAO Tong,REN Yi,LEI Han. Recombinant Saccharomyces cerevisiae Expressing Helicobacter pylori VacA Protein and Its Immunogenicity Analysis[J]. China Biotechnology, 2020, 40(5): 15-21.
[6] Jun HUANG,Ren-zhi WU,Qi LU,Zhi-long LU. Research Progress on Xylose Transporters of Saccharomyces cerevisiae[J]. China Biotechnology, 2018, 38(2): 109-115.
[7] ZHANG Wei, LIU Duo, LI Bing-zhi, YUAN Ying-jin. Construction and Optimization of p-coumaric Acid Producing Saccharomyces cerevisiae[J]. China Biotechnology, 2017, 37(9): 89-97.
[8] LI Bo, LIANG Nan, LIU Duo, LIU Hong, WANG Ying, XIAO Wen-hai, YAO Ming-dong, YUAN Ying-jin. Metabolic Engineering of Saccharomyces cerevisiae for Production of 8-Dimenthylally Naringenin[J]. China Biotechnology, 2017, 37(9): 71-81.
[9] ZHANG Zhong-su, YANG Rui-gang, ZHU Ling-yun, WU Xiao-min. Strategies for Improving The Yield of Microbial Terpenoids Production[J]. China Biotechnology, 2017, 37(1): 97-103.
[10] ZHAO Ying, LIU Jin, WANG Chang-song, ZHAO Guang-rong. Advances on Flavonoids Production of Engineered Microorganisms[J]. China Biotechnology, 2014, 34(4): 110-117.