Please wait a minute...


China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (1): 97-103    DOI: 10.13523/j.cb.20170114
Strategies for Improving The Yield of Microbial Terpenoids Production
ZHANG Zhong-su, YANG Rui-gang, ZHU Ling-yun, WU Xiao-min
Department of Chemistry and Biology, College of Science, National University of Defense Technology, Changsha 410073, China
Download: HTML   PDF(526KB) HTML
Export: BibTeX | EndNote (RIS)      


Terpenoids, a family of compounds with a wide range of diversity and structural complexity, play important roles in the fields of pharmaceutics and energy. The terpenoid compounds are mainly extracted from plants or chemically synthesized, which are both cost-effectiveness. On contrary, the economic and efficient way of microbial synthesis is more promising. However, due to the complexity of theterpenoidsynthesis pathway and the difficult manipulation of the host metabolic networks, most terpenoid compounds have notbiologically synthesized inan agreeable yield. Here,the strategies for improving the yield of microbial terpenoids production.

Key wordsTerpenoids      Microbial synthesis      Production improvement      Metabolic pathway     
Received: 27 September 2016      Published: 25 January 2017
ZTFLH:  Q946.8  
Cite this article:

ZHANG Zhong-su, YANG Rui-gang, ZHU Ling-yun, WU Xiao-min. Strategies for Improving The Yield of Microbial Terpenoids Production. China Biotechnology, 2017, 37(1): 97-103.

URL:     OR

[1] Breitmaier E. Terpenes:Flavors, Fragrances, Pharmaca, Pheromones. New Jersey:Wiley-VCH, 2006.
[2] Nemere I, Pietras R J, Blackmore P F. Membrane receptors for steroid hormones:signal transduction and physiological significance. Journal of Cellular Biochemistry, 2003, 88(3):438-445.
[3] Howitt C A, Pogson B J. Carotenoid accumulation and function in seeds and non-green tissues. Plant Cell & Environment, 2006, 29(3):435-445.
[4] Berry S. The chemical basis of membrane bioenergetics. Journal of Molecular Evolution, 2002, 54(5):595-613.
[5] Tippmann S, Chen Y, Siewers V, et al. From flavors and pharmaceuticals to advanced biofuels:Production of isoprenoids in Saccharomyces cerevisiae. Biotechnology Journal, 2013, 8(12):1435-1444.
[6] Chang M C, Keasling J D. Production of isoprenoid pharmaceuticals by engineered microbes. Nature Chemical Biology, 2006, 2(12):674-681.
[7] 杨金玲, 高丽丽, 朱平. 人参皂苷生物合成研究进展. 药学学报, 2013,48(2):170-178. Yang J L,Gao L L,Zhu P.Advances in the biosynthesis research of ginsenosides. Acta Pharmaceutica Sinica,2013,48(2):170-178.
[8] Keasling J D. Synthetic biology and the development of tools for metabolic engineering. Metabolic Engineering, 2012, 14(3):189-195.
[9] Ajikumar P K, Tyo K, Carlsen S, et al. Terpenoids:opportunities for biosynthesis of natural product drugs using engineered microorganisms. Molecular Pharmaceutics, 2008, 5(2):167-190.
[10] Rohmer M, Knani M, Simonin P, et al. Isoprenoid biosynthesis in bacteria:a novel pathway for the early steps leading to isopentenyl diphosphate. Biochemical Journal, 1993, 295(Pt 2)(1):517-524.
[11] Lichtenthaler H K. Non-mevalonate isoprenoid biosynthesis:enzymes, genes and inhibitors. Biochemical Society Transactions, 2000, 28(6):785-789.
[12] Kuzuyama T. Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Bioscience Biotechnology & Biochemistry, 2002, 66(8):1619-1627.
[13] Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496(7446):528-532.
[14] Westfall P J, Pitera D J, Lenihan J R, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proceedings of the National Academy of Sciences, 2012, 109(3):E111-E118.
[15] Sarria S, Wong B, García M H, et al. Microbial synthesis of pinene. Acs Synthetic Biology, 2014, 3(7):466-475.
[16] Tashiro M, Kiyota H, Kawainoma S, et al. Bacterial production of pinene by a laboratory-evolved pinene-synthase. Acs Synthetic Biology, 2016.
[17] Yang J, Nie Q, Ren M, et al. Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene. Biotechnology for Biofuels, 2013, 6(1):1-10.
[18] Beekwilder J, Houwelingen A V, Cankar K, et al. Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene. Plant Biotechnology Journal, 2014, 12(2):174-182.
[19] Jongedijk E, Cankar K, Ranzijn J, et al. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae. Yeast, 2014, 32(1):159-171.
[20] Sasaki K, Ohara K, Yazaki K. Gene expression and characterization of isoprene synthase from Populus alba. Febs Letters, 2005, 579(11):2514-2518.
[21] Schnitzler J, Zimmer I, Bachl A, et al. Biochemical properties of isoprene synthase in poplar (Populus x canescens). Planta, 2005, 222(5):777-786.
[22] Zurbriggen A, Kirst H, Melis A. Isoprene production via the mevalonic acid pathway in Escherichia coli (Bacteria). Bioenergy Research, 2012, 5(4):814-828.
[23] Fiona, Bentley, Andreas, et al. Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Molecular Plant, 2014, 7(1):71-86.
[24] Ajikumar P K, Xiao W H, Tyo K E J, et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science, 2010, 330(6000):70-74.
[25] Lv X, Xu H, Yu H. Significantly enhanced production of isoprene by ordered coexpression of genes dxs, dxr, and idi in Escherichia coli. Applied Microbiology & Biotechnology, 2013, 97(6):2357-2365.
[26] Kim S W, Keasling J D. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnology & Bioengineering, 2001, 72(4):408-415.
[27] Matthews P D, Wurtzel E T. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Applied Microbiology & Biotechnology, 2000, 53(4):396-400.
[28] Yuan L Z, Rouvière P E, Larossa R A, et al. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metabolic Engineering, 2006, 8(1):79-90.
[29] Chen Y, Siewers V, Nielsen J. Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae. PLoS One, 2012, 7(8):599-602.
[30] Yun C, Daviet L, Schalk M, et al. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metabolic Engineering, 2013, 15(1):48-54.
[31] Shiba Y, Paradise E M, Kirby J, et al. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metabolic Engineering, 2007, 9(2):160-168.
[32] Krivoruchko A, Serrano-Amatriain C, Yun C, et al. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. Journal of Industrial Microbiology & Biotechnology, 2013, 40(9):1051-1056.
[33] Kocharin K, Yun C, Siewers V, et al. Engineering of acetyl-CoA metabolism for the improved production of polyhydroxybutyrate in Saccharomyces cerevisiae. Amb Express, 2012, 2(1):1-11.
[34] Kozak B U, Rossum H M V, Benjamin K R, et al. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metabolic Engineering, 2014, 21(1):46-59.
[35] Farmer W R, Liao J C. Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnology Progress, 2001, 17(1):57-61.
[36] Martin V J J, Pitera D J, Withers S T, et al. Engineering a mevalonate pathway in Escherichia coli forproduction of terpenoids. Nature Biotechnology, 2003, 21(7):796-802.
[37] Pitera D J, Paddon C J, Newman J D, et al. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metabolic Engineering, 2007, 9(2):193-207.
[38] Zhou Y J, Gao W, Rong Q, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. Journal of the American Chemical Society, 2012, 134(6):3234-3241.
[39] Xu P, Gu Q, Wang W, et al. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nature Communications, 2013, 4(1):273-275.
[40] Wu J, Du G, Zhou J, et al. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metabolic Engineering, 2013, 16(1):48-55.
[41] Gao X, Gao F, Liu D, et al. Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy & Environmental Science, 2016, 9(4):1400-1411.
[42] Dueber J E, Wu G C, Malmirchegini G R, et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nature Biotechnology, 2009, 27(8):753-759.
[43] Conrado R J, Wu G C, Boock J T, et al. DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Research, 2012, 40(4):1879-1889.
[44] Delebecque C J, Aldaye F A. Organization of intracellular reactions with rationally designed RNA assemblies. Science, 2011, 333(6041):470-474.
[45] Farhi M, Marhevka E, Masci T, et al. Harnessing yeast subcellular compartments for the production of plant terpenoids. Metabolic Engineering, 2011, 13(5):474-481.
[46] Hammer K, Mijakovic I, Jensen P R. Synthetic promoter libraries-tuning of gene expression. Trends in Biotechnology, 2006, 24(2):53-55.
[47] Miksch G, Bettenworth F K, Flaschel E, et al. Libraries of synthetic stationary-phase and stress promoters as a tool for fine-tuning of expression of recombinant proteins in Escherichia coli. Journal of Biotechnology, 2005, 120(1):25-37.
[48] Smolke C D, Martin V J J, Keasling J D. Controlling the metabolic flux through the carotenoid pathway using directed mRNA processing and stabilization. Metabolic Engineering, 2001, 3(4):313-321.
[49] Salis H M, Mirsky E A, Voigt C A. Automated design of synthetic ribosome binding sites to control protein expression. Nature Biotechnology, 2009, 27(10):946-950.
[50] Zhang F, Carothers J M, Keasling J D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nature Biotechnology, 2012, 30(4):354-359.
[51] Robert H D, Zhang F I, Alonsogutierrez J, et al. Engineering dynamic pathway regulation using stress-response promoters. Nature Biotechnology, 2013, 31(11):1039-1046.
[52] Asadollahi M A, Maury J, K M, et al. Production of plant sesquiterpenes in Saccharomyces cerevisiae:Effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnology & Bioengineering, 2008, 99(3):666-677.
[53] Brennan T C R, Turner C D, Kr mer J O, et al. Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnology & Bioengineering, 2012, 109(10):2513-2522.
[54] Chang M C, Eachus R A, Trieu W, et al. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nature Chemical Biology, 2007, 3(5):274-277.

[1] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[2] ZHANG Yu-ting,LI Wei-guo,LIANG Dong-mei,QIAO Jian-jun,CAI YIN Qing-ge-le. Research Progress in Synthetic Biology of P450s in Terpenoid Synthesis[J]. China Biotechnology, 2020, 40(8): 84-96.
[3] Shuo XU,Wen-yu LU. Progress of Heterologous Biosynthesis of Terpenoids in Engineered Corynebacterium glutamicum[J]. China Biotechnology, 2019, 39(6): 91-96.
[4] ZHANG Qiang, LI Da shuai, LU Wen yu. Progress and Prospect of Heterologous Biosynthesis of Ttriterpenoids in Engineered Escherichia coli[J]. China Biotechnology, 2016, 36(11): 83-89.
[5] ZHAO Ying, LIU Jin, WANG Chang-song, ZHAO Guang-rong. Advances on Flavonoids Production of Engineered Microorganisms[J]. China Biotechnology, 2014, 34(4): 110-117.
[6] SHANG Shu-mei, CHAGAN Irbis, SHEN Dong-ling, LI Kun-zhi. Study on Metabolic Pathway of Efficiently Producting Ethanol by Thermophilic bacterium Using Mannitol[J]. China Biotechnology, 2013, 33(10): 73-80.
[7] QIAN Long, TANG Li-wei, HUANG Shu-shi, Chagan Irbis. Research Progress of Bioethanol from Alginate Fermentation[J]. China Biotechnology, 2013, 33(1): 122-127.
[8] . Gentic Manipulation on Biosynthesis of Terpenoids[J]. China Biotechnology, 2006, 26(01): 60-64.