Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (6): 50-59    DOI: 10.13523/j.cb.2102020
    
Advances in Molecular Biological Methods to Improve Extracellular Electron Transport Efficiency of Electroactive Microorganisms
SHAO Ying-zhi1,CHE Jian2,CHENG Chi1,**(),JIANG Zhi-yang3,XUE Chuang1,**()
1 Dalian University of Technology, School of Bioengineering, Engineering Research Center of Application and Transformation for Synthetic Biology, Dalian 116024, China
2 Dalian Xinyulong Marine Biological Seed Technology Co., Ltd., Dalian 116222, China
3 Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
Download: HTML   PDF(606KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The efficiency of extracellular electron transfer between microbial cells and electrodes is a key factor limiting the development of microbial electrochemical technology, and the development of molecular biology has brought bright prospects for improving the efficiency of extracellular electron transfer. The results of engineering four representative electroactive microorganisms (Shewanella oneidensis MR-1, Pseudomonas aeruginosa, Geobacter sulfurreducens and engineered Escherichia coli) in pure culture and mixed culture by means of molecular biology are reviewed. How molecular biology methods adopt corresponding improvement strategies for different electroactive microorganisms are explained, and future research directions are prospected.



Key wordsExtracellular electron transfer      Electroactive microorganism      Molecular biology      Electroactive biofilm     
Received: 22 February 2021      Published: 06 July 2021
ZTFLH:  Q819  
Corresponding Authors: Chi CHENG,Chuang XUE     E-mail: cheng.chi@dlut.edu.cn;xue.1@dlut.edu.cn
Cite this article:

SHAO Ying-zhi,CHE Jian,CHENG Chi,JIANG Zhi-yang,XUE Chuang. Advances in Molecular Biological Methods to Improve Extracellular Electron Transport Efficiency of Electroactive Microorganisms. China Biotechnology, 2021, 41(6): 50-59.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2102020     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I6/50

Fig.1 The extracellular electron transfer mechanism of the three electroactive microorganisms
EAM Modification strategy Results of modification Reference
S. oneidensis
MR-1
Overexpression of the NAD+ synthesis gene The maximum power output density was 4.4 times higher than that in the wild type and the coulomb efficiency was 1.5 times higher [24]
Overexpression of flaxin synthesis gene cluster (ribDCBAE) and metal reductase gene cluster (mtrCAB) The maximum current density in MFC increased by about 110% [25]
Increased electroactive biofilm thickness of MFC anode The maximum output power density is 18.8 times higher than that of the wild type [28]
Expressing a c-di-GMP synthase to increase cytoplasmic c-di-GMP level The high c-di-GMP strain had a higher Fe(III) reduction rate (21.58 vs 11.88 pmol/L of Fe(III)/h cell) and greater expression of genes that code for the proteins involved in the Mtr pathway [30]
Intelligent resource allocation based on quorum sensing The efficiency of extracellular electron transfer improved by 4.8 times [31]
P. aeruginosa Knocking out the global regulator RpoS Enhanced the formation of biofilm on the electrode [37]
Heterologous expression of global regulator gene IrrE Maximum power density increased by approximately 71% [39]
G. sulfurreducens Overexpression of polysaccharide synthetic gene GSU1501 The maximum current is 22.2% higher than the control strain [17]
Overexpression of PilA gene from G. metallireducens in G. sulfurreducens The conductivity is 5 000 times that of G. sulfurreducens and 1 million times that of G. uraniireducens [48]
Engineered E. coli Nine different soluble phenazineredox mediators that support efficient EET were added. A maximum mediated current density of(7.9 ± 0.9) μA/cm 2 with NR, followed by(6.2 ±0.6) μA/cm 2 with pyocyanin, and about 3.0 μA/cm 2 with no mediators [13]
Expression of the exogenous gene encoding NDH-2 inE. coli BL21(DE3) The total NAD(H) increased by 1.32 times [51]
Multiple-knockout of central metabolism genes The maximum output power is 1.5 times higher than the wild type [49]
Expression of FAD synthetic genes Compared with the parent strain, the yield of succinic acid produced by fumaric acid increased by about 60% [52]
Introduced the Mtr pathway into E. coli cells by expressing ccmABCDEFGH from E. coli Succinic acid yield increased by 6.32 mmol/L and coulomb efficiency increased by about 113% [50]
Inhibition of colanic acid synthesis gene (wcaF) Effectively control the overgrowth of biofilm [55]
Mixed culture E. coli-B. subtilis-S. oneidensis Glucose (11 mmol/L, total 0.28 g) was converted to electricity for more than 15 days with high energy conversion efficiency (up to 55.7%) [56]
K. pneumoniae-S. oneidensis The maximum power density is up to 19.9 mW/m2 [57]
E. coli-E. coli-S. oneidensis The electricity production exceeds 350 mV, and the electricity production time exceeds 100 hours [58]
Table 1 Summary table to improve EET efficiency of EAM
[1]   Glaven S M. Bioelectrochemical systems and synthetic biology: more power, more products. Microbial Biotechnology, 2019, 12(5):819-823.
doi: 10.1111/1751-7915.13456 pmid: 31264368
[2]   Pous N, Balaguer M D, Colprim J, et al. Opportunities for groundwater microbial electro-remediation. Microbial Biotechnology, 2018, 11(1):119-135.
doi: 10.1111/1751-7915.12866
[3]   Prévoteau A, Rabaey K. Electroactive biofilms for sensing: reflections and perspectives. ACS Sensors, 2017, 2(8):1072-1085.
doi: 10.1021/acssensors.7b00418 pmid: 28745865
[4]   Yang Y, Yu Y Y, Wang Y Z, et al. Amplification of electrochemical signal by a whole-cell redox reactivation module for ultrasensitive detection of pyocyanin. Biosensors and Bioelectronics, 2017, 98:338-344.
doi: 10.1016/j.bios.2017.07.008
[5]   Geng B Y, Cao L Y, Li F, et al. Potential of Zymomonas mobilis as an electricity producer in ethanol production. Biotechnology for Biofuels, 2020, 13(1):1-11.
doi: 10.1186/s13068-019-1642-1
[6]   Chiranjeevi P, Patil S A. Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies. Biotechnology Advances, 2020, 39:107468.
doi: S0734-9750(19)30168-5 pmid: 31707076
[7]   Angelaalincy M J, Navanietha Krishnaraj R, Shakambari G, et al. Biofilm engineering approaches for improving the performance of microbial fuel cells and bioelectrochemical systems. Frontiers in Energy Research, 2018, 6:63. DOI: 10.3389/fenrg.2018.00063.
doi: 10.3389/fenrg.2018.00063
[8]   Wang R W, Li H D, Sun J Z, et al. Nanomaterials facilitating microbial extracellular electron transfer at interfaces. Advanced Materials, 2020, 33(6):2004051.
doi: 10.1002/adma.v33.6
[9]   Gregory K B, Bond D R, Lovley D R. Graphite electrodes as electron donors for anaerobic respiration. Environmental Microbiology, 2004, 6(6):596-604.
doi: 10.1111/emi.2004.6.issue-6
[10]   Patil S A, Hägerhäll C, Gorton L. Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bioanalytical Reviews, 2012, 4(2-4):159-192.
doi: 10.1007/s12566-012-0033-x
[11]   Lovley D R. Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy & Environmental Science, 2011, 4(12):4896.
[12]   Malvankar N S, Vargas M, Nevin K P, et al. Tunable metallic-like conductivity in microbial nanowire networks. Nature Nanotechnology, 2011, 6(9):573-579.
doi: 10.1038/nnano.2011.119 pmid: 21822253
[13]   Simoska O, Gaffney E M, Lim K, et al. Understanding the properties of phenazine mediators that promote extracellular electron transfer in Escherichia coli. Journal of the Electrochemical Society, 2021, 168(2):025503.
doi: 10.1149/1945-7111/abe52d
[14]   Gong Z Y, Yu H, Zhang J Q, et al. Microbial electro-fermentation for synthesis of chemicals and biofuels driven by bi-directional extracellular electron transfer. Synthetic and Systems Biotechnology, 2020, 5(4):304-313.
doi: 10.1016/j.synbio.2020.08.004
[15]   Logan B E, Rossi R, Ragab A, et al. Electroactive microorganisms in bioelectrochemical systems. Nature Reviews Microbiology, 2019, 17(5):307-319.
doi: 10.1038/s41579-019-0173-x
[16]   Flynn C M, Hunt K A, Gralnick J A, et al. Construction and elementary mode analysis of a metabolic model for Shewanella oneidensis MR-1. Biosystems, 2012, 107(2):120-128.
doi: 10.1016/j.biosystems.2011.10.003 pmid: 22024451
[17]   Zhuang Z, Yang G Q, Mai Q J, et al. Physiological potential of extracellular polysaccharide in promoting Geobacter biofilm formation and extracellular electron transfer. Science of the Total Environment, 2020, 741:140365.
doi: 10.1016/j.scitotenv.2020.140365
[18]   刘海霞, 李雪明, 宋天顺, 等. 常见电子介体对大肠杆菌微生物燃料电池产电性能的影响. 生物加工过程, 2019, 17(5):474-480.
[18]   Liu H X, Li X M, Song T S, et al. Effects of different electron mediators on the performance of Escherichia coli BL21(DE3) microbial fuel cell . Chinese Journal of Bioprocess Engineering, 2019, 17(5):474-480.
[19]   李锋, 宋浩. 微生物胞外电子传递效率的合成生物学强化. 生物工程学报, 2017, 33(3):516-534.
[19]   Li F, Song H. Synthetic biological enhancement of extracellular electron transport efficiency in microorganisms. Chinese Journal of Biotechnology, 2017, 33(3):516-534.
[20]   Wu X, Zou L, Huang Y H, et al. Shewanella putrefaciens CN32 outer membrane cytochromes MtrC andUndA reduce electron shuttles to produce electricity in microbial fuel cells. Enzyme and Microbial Technology, 2018, 115:23-28.
doi: 10.1016/j.enzmictec.2018.04.005
[21]   Conley B E, Intile P J, Bond D R, et al. Divergent nrf family proteins and MtrCAB homologs facilitate extracellular electron transfer in Aeromonas hydrophila. Applied and Environmental Microbiology, 2018, 84(23):e02134-e02118.
[22]   Light S H, Su L, Rivera-Lugo R, et al. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature, 2018, 562(7725):140-144.
doi: 10.1038/s41586-018-0498-z
[23]   Light S H, Méheust R, Ferrell J L, et al. Extracellular electron transfer powers flavinylated extracellular reductases in Gram-positive bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(52):26892-26899.
[24]   Li F, Li Y X, Cao Y X, et al. Modular engineering to increase intracellular NAD(H/+) promotes rate of extracellular electron transfer of Shewanella oneidensis. Nature Communications, 2018, 9:3637.
doi: 10.1038/s41467-018-05995-8
[25]   Min D, Cheng L, Zhang F, et al. Enhancing extracellular electron transfer of Shewanella oneidensis MR-1 through coupling improved flavin synthesis and metal-reducing conduit for pollutant degradation. Environmental Science & Technology, 2017, 51(9):5082-5089.
doi: 10.1021/acs.est.6b04640
[26]   Flemming H C, Neu T R, Wozniak D J. The EPS matrix: the “house of biofilm cells”. Journal of Bacteriology, 2007, 189(22):7945-7947.
doi: 10.1128/JB.00858-07
[27]   Sheng G P, Yu H Q, Li X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnology Advances, 2010, 28(6):882-894.
doi: 10.1016/j.biotechadv.2010.08.001
[28]   Lin T, Ding W Q, Sun L M, et al. Engineered Shewanella oneidensis-reduced graphene oxide biohybrid with enhanced biosynthesis and transport of flavins enabled a highest bioelectricity output in microbial fuel cells. Nano Energy, 2018, 50:639-648.
doi: 10.1016/j.nanoen.2018.05.072
[29]   Andersen J B, Kragh K N, Hultqvist L D, et al. Induction of native c-di-GMP phosphodiesterases leads to dispersal of Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy, 2021, 65(4). DOI: 10.1128/aac.02431-20.
[30]   Ng C K, Xu J B, Cai Z, et al. Elevated intracellular cyclic-di-GMP level in Shewanella oneidensis increases expression of c-type cytochromes. Microbial Biotechnology, 2020, 13(6):1904-1916.
doi: 10.1111/mbt2.v13.6
[31]   Li F H, Tang Q, Fan Y Y, et al. Developing a population-state decision system for intelligently reprogramming extracellular electron transfer in Shewanella oneidensis. PNAS, 2020, 117(37):23001-23010.
doi: 10.1073/pnas.2006534117
[32]   Qiao Y, Qiao Y J, Zou L, et al. Real-time monitoring of phenazines excretion in Pseudomonas aeruginosa microbial fuel cell anode using cavity microelectrodes. Bioresource Technology, 2015, 198:1-6.
doi: 10.1016/j.biortech.2015.09.002 pmid: 26360598
[33]   Bosire E M, Rosenbaum M A. Electrochemical potential influences phenazine production, electron transfer and consequently electric current generation by Pseudomonas aeruginosa. Frontiers in Microbiology, 2017, 8:892.
doi: 10.3389/fmicb.2017.00892 pmid: 28572797
[34]   Potvin E, Sanschagrin F, Levesque R C. Sigma factors in Pseudomonas aeruginosa. FEMS Microbiology Reviews, 2008, 32(1):38-55.
doi: 10.1111/j.1574-6976.2007.00092.x
[35]   Schuster M, Hawkins A C, Harwood C S, et al. The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Molecular Microbiology, 2004, 51(4):973-985.
doi: 10.1046/j.1365-2958.2003.03886.x
[36]   Irie Y, Starkey M, Edwards A N, et al. Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA. Molecular Microbiology, 2010, 78(1):158-172.
[37]   Yu Y Y, Fang Z, Gao L, et al. Engineering of bacterial electrochemical activity with global regulator manipulation. Electrochemistry Communications, 2018, 86:117-120.
doi: 10.1016/j.elecom.2017.12.003
[38]   Bouillet S, Genest O, Méjean V, et al. Protection of the general stress response σS factor by the CrsR regulator allows a rapid and efficient adaptation of Shewanella oneidensis. Journal of Biological Chemistry, 2017, 292(36):14921-14928.
doi: 10.1074/jbc.M117.781443 pmid: 28729423
[39]   Luo J M, Wang T T, Li X, et al. Enhancement of bioelectricity generation via heterologous expression of IrrE in Pseudomonas aeruginosa-inoculated MFCs. Biosensors and Bioelectronics, 2018, 117:23-31.
doi: 10.1016/j.bios.2018.05.052
[40]   Saunders S H, Tse E C M, Yates M D, et al. Extracellular DNA promotes efficient extracellular electron transfer by pyocyanin in Pseudomonas aeruginosa biofilms. Cell, 2020, 182(4): 919-932.e19.
doi: S0092-8674(20)30871-0 pmid: 32763156
[41]   Flemming H C, Wingender J. The biofilm matrix. Nature Reviews Microbiology, 2010, 8(9):623-633.
doi: 10.1038/nrmicro2415
[42]   Glasser N R, Saunders S H, Newman D K. The colorful world of extracellular electron shuttles. Annual Review of Microbiology, 2017, 71:731-751.
doi: 10.1146/annurev-micro-090816-093913
[43]   Kai A, Tokuishi T, Fujikawa T, et al. Proteolytic maturation of the outer membrane c-type cytochrome OmcZ by subtilisin-like serine protease is essential for optimal current production by Geobacter sulfurreducens. Applied and Environmental Microbiology, 2021. DOI: 10.1128/AEM.02617-20.
[44]   Ueki T. Cytochromes in extracellular electron transfer in Geobacter. Applied and Environmental Microbiology, 2021. DOI: 10.1128/aem.03109-20.
[45]   Kumar A, Hsu LeoH H, Kavanagh P, et al. The ins and outs of microorganism-electrode electron transfer reactions. Nature Reviews Chemistry, 2017, 1:0024.
doi: 10.1038/s41570-017-0024
[46]   Steidl R J, Lampa-Pastirk S, Reguera G. Mechanistic stratification in electroactive biofilms of Geobacter sulfurreducens mediated by Pilus nanowires. Nature Communications, 2016, 7:12217.
doi: 10.1038/ncomms12217
[47]   Lovley D R. Electrically conductive pili: Biological function and potential applications in electronics. Current Opinion in Electrochemistry, 2017, 4(1):190-198.
doi: 10.1016/j.coelec.2017.08.015
[48]   Tan Y, Adhikari R Y, Malvankar N S, et al. Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens yields pili with exceptional conductivity. mBio, 2017, 8(1):e02203-e02216.
[49]   Ojima Y, Kawaguchi T, Fukui S, et al. Promoted performance of microbial fuel cells usingEscherichia coli cells with multiple-knockout of central metabolism genes. Bioprocess and Biosystems Engineering, 2020, 43(2):323-332.
doi: 10.1007/s00449-019-02229-z
[50]   Feng J, Jiang M J, Li K, et al. Direct electron uptake from a cathode using the inward Mtr pathway in Escherichia coli. Bioelectrochemistry, 2020, 134:107498.
doi: 10.1016/j.bioelechem.2020.107498
[51]   Vamshi Krishna K, Venkata Mohan S. Purification and characterization of NDH-2 protein and elucidating its role in extracellular electron transport and bioelectrogenic activity. Frontiers in Microbiology, 2019, 10:880. DOI: 10.3389/fmicb.2019.00880.
doi: 10.3389/fmicb.2019.00880 pmid: 31133996
[52]   Wu Z Q, Wang J S, Zhang X L, et al. Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate by increasing the intracellular FAD pool. Biochemical Engineering Journal, 2019, 146:132-142.
doi: 10.1016/j.bej.2019.03.015
[53]   Wu Z Q, Wang J S, Liu J, et al. Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate from glucose and CO2. Microbial Cell Factories, 2019, 18(1):15.
doi: 10.1186/s12934-019-1067-3
[54]   Kim H W, Oh H S, Kim S R, et al. Microbial population dynamics and proteomics in membrane bioreactors with enzymatic quorum quenching. Applied Microbiology and Biotechnology, 2013, 97(10):4665-4675.
doi: 10.1007/s00253-012-4272-0
[55]   Zhang J Y, Poh C L. Regulating exopolysaccharide gene wcaF allows control of Escherichia coli biofilm formation. Scientific Reports, 2018, 8:13127.
doi: 10.1038/s41598-018-31161-7
[56]   Liu Y, Ding M Z, Ling W, et al. A three-species microbial consortium for power generation. Energy and Environmental Science, 2017, 10:1600-1609.
doi: 10.1039/C6EE03705D
[57]   Li F, Yin C J, Sun L M, et al. Synthetic Klebsiella pneumoniae-Shewanella oneidensis consortium enables glycerol-fed high-performance microbial fuel cells. Biotechnology Journal, 2018, 13(5):e1700491. DOI: 10.1002/biot.201700491.
[58]   元英进, 刘悦, 赵学明, 等. 混合菌群及其用途、含有该混合菌群的微生物产电体系和微生物燃料电池:中国, CN201510814601.0. 2017-05-31[2021-02-18]. https://xueshu.baidu.com/usercenter/paper/show?paperid=1r0u0r90991j0rv0rs1q04d0y6095856&site=xueshu_se.
[58]   Yuan Y J, Liu Y, Zhao X M, et al. Mixed flora and its use, microbial power generation system and microbial fuel cell containing the mixed flora: Chinese, CN201510814601.0. 2017-05-31[2021-02-18]. https://xueshu.baidu.com/usercenter/paper/show?paperid=1r0u0r909 91j0rv0rs1q04d0y6095856&site=xueshu_se.
[59]   Barbosa S G, Peixoto L, Alves M S, et al. Bioelectrochemical systems for production of valuable compounds. Bioelectrochemical Interface Engineering, 2019, 16:311-324.
[1] LI Yuan-yuan,LI Yan,CAO Ying-xiu,SONG Hao. Research and Strategies of Flavins-mediated Extracellular Electron Transfer[J]. China Biotechnology, 2021, 41(10): 89-99.
[2] JIA Xiao-mei,NI Li,LUO Hong-yan,DING Hong-lei,WANG Hao-ju. Research Progress in Pasteurella Multocida Detection Technology[J]. China Biotechnology, 2020, 40(8): 49-54.
[3] ZHANG Ling-mei,NG Hao-ju. Research Progress in Streptococcus suis Detection Technology[J]. China Biotechnology, 2020, 40(4): 84-91.
[4] Zuo-bo XU,Jiu-bing LI,Hong-lei DING. Research Progress in Mycoplasma hyopneumonia Detection Technology[J]. China Biotechnology, 2019, 39(4): 78-83.
[5] WANG Hong-su, GUAN Gui-jing, LIU Jin-xiang. Application of Alexa Fluor in Cytology and Molecular Biology[J]. China Biotechnology, 2015, 35(9): 71-77.
[6] WEI Jin-mei, FAN Xiao-qin, XIONG Hai-ting, GAO Xue-juan, LIU Xiao-hui, LIU Lang-xia. hnRNPK Interacts with Nef and Facilitates the Cell Surface Expression of CD4[J]. China Biotechnology, 2015, 35(4): 17-22.
[7] JIANG Yan-chao, JIANG Shi-yun, FU Feng-ming, HUANG Kai, KANG Xing-xin, XU Dan. Advance in Research on HA Biosynthesis and Gene Engineering[J]. China Biotechnology, 2015, 35(1): 104-110.
[8] XU Jun, LIU Cui-cui, DING De-wu, SUN Xiao, XIE Jian-ming. Reconstruction and Analysis of the Gene Regulatory Networks of Shewanella onedensis MR-1[J]. China Biotechnology, 2014, 34(11): 42-46.
[9] ZHANG Lei, YANG Yu, WU Chuan-fang. A Novel Purification Method for Lysosomes by Lmmunoprecipitation[J]. China Biotechnology, 2013, 33(11): 51-55.
[10] . Studies on Molecular Biology of the Desaturases of Highly Uunsaturated Fatty Acid Biosynthesis I. Structure and Functions[J]. China Biotechnology, 2008, 28(专刊): 201-214.
[11] . The pathway for CoQ biosynthesis in microorganisms and the recent progress in the genetic improvement of microbial strains for CoQ10 production with the aid of molecular biological methods[J]. China Biotechnology, 2007, 27(10): 103-112.
[12] . [J]. China Biotechnology, 1997, 17(3): 13-17.