Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (4): 49-58    DOI: 10.13523/j.cb.1911045
    
Immobilization of Extracellaluar Proteases of Bacillus sp. DL-2 Using Epoxy Resin to Asymmetrically Hydrolyze (±)-1-Phenylethyl Acetate
DONG Lu1,2,ZHANG Ji-fu4,ZHANG Yun1,HU Yun-feng1,3,**()
1 Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medical, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
4 Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
Download: HTML   PDF(1352KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Epoxy group, a very active group, can react with biomolecules such as enzymes, proteins, nucleic acid and form covalent bonds, which is beneficial for the immobilization of biomolecules. Enzymes immobilized on carriers via covalent binding exhibit better stability and reusability than free enzymes. The extracellular proteases of marine bacterium Bacillus sp. DL-2 were immobilized by covalent bonding onto epoxy resin ES-103B. After the the optimization of immobilization conditions, pH 8.0 extracellular proteases solution, 25 g/L epoxy resin ES-103B, and 45 ℃ for 8 h were determined as the optimal conditions for immobilized proteases to asymmetrically hydrolyze (±)-1-phenylethyl acetate, which generated (R)-1-phenylethanol with the e.e.p being 97.5% and the yield being 45.0%, and generated (S)-1-phenylethyl acetate with the e.e.s being 99.2% and the yield being 83.9%, respectively. The the immobilized enzyme could be reused to resolve (±)-1-phenylethyl acetate for eight times and the e.e.p still retained over 90%. Additionally, the immobilized extracellular proteases showed good storage stability at 4℃.



Key wordsEpoxy resin ES-103B      Marine bacterium      Immobilized enzyme      Asymmetric hydrolysis      (R)-1-phenylethanol      (S)-1-phenylethyl acetate     
Received: 28 November 2019      Published: 18 May 2020
ZTFLH:  Q502  
Corresponding Authors: Yun-feng HU     E-mail: yunfeng.hu@scsio.ac.cn
Cite this article:

DONG Lu,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Extracellaluar Proteases of Bacillus sp. DL-2 Using Epoxy Resin to Asymmetrically Hydrolyze (±)-1-Phenylethyl Acetate. China Biotechnology, 2020, 40(4): 49-58.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.1911045     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I4/49

Fig.1 Asymmetric hydrolysis of (±)-1-phenylethyl acetate by immobilized extracellaluar proteases of Bacillus sp. DL-2 derived from epoxy resins
环氧树脂类型 ES-1 ES-103B ES-107 EP200 LX-
1000EP
LX-
1000EPC
LX-
1000EPF
LX-
EP120
MC-
300EP
第一次 e.e.p (%) 93.3 93.9 74.4 68.2 87.2 79.7 93.2 67.0 85.5
C (%) 5.1 6.7 2.2 1.3 2.3 1.3 3.4 1.1 1.7
第二次 e.e.p (%) 47.9 84.3 —— —— —— —— 67.1 —— ——
C (%) 0.4 2.4 —— —— —— —— 2.4 —— ——
Table 1 Comparation of the asymmetric hydrolysis of (±)-1-phenylethyl acetate by immobilized extracellaluar proteases of Bacillus sp. DL-2 derived from 9 different epoxy resins
Fig.2 The optimization of immobilization conditions of extracellaluar proteases (a) Effect of temperature on the activity of immobilized enzyme (b) Effect of immobilization time on the activity of immobilized enzyme (c) Effect of carrier concentration on the activity of immobilized enzyme (d) Effect of buffer pH on the activity of immobilized enzyme
Fig.3 The gas chromatogram of (R)-1-phenylethanol and (S)-1-phenylethyl acetate prepared through asymmetric hydrolysis of (±)-1-phenylethyl acetate using the extracellaluar proteases immobilized by ES-103B (a) standards of (±)-1-phenylethyl acetate and (±)-1-phenylethanol (b) (R)-1-phenylethanol prepared after enzymatic kinetic resolution (c) (S)-1-phenylethyl acetate prepared after enzymatic kinetic resolution
Fig.4 The reusability and storage stability of immobilized extracellaluar proteases (a) Reusability in the hydrolysis of (±)-1-phenylethyl acetate catalyzed by immobilized extracellular proteases for the preparation of (R)-1-phenylethanol (b) Reusability in the hydrolysis of (±)-1-phenylethyl acetate catalyzed by immobilized extracellular proteases for the preparation of (S)-1-phenylethyl acetate (c) Storage stability in the hydrolysis of (±)-1-phenylethyl acetate catalyzed by immobilized extracellular proteases for the preparation of (R)-1-phenylethanol (d) Storage stability in the hydrolysis of (±)-1-phenylethyl acetate catalyzed by immobilized extracellular proteases for the preparation of (S)-1-phenylethyl acetate
固定化载体 (R)-1-苯乙醇 (S)-乙酸苏合香酯
e.e.p
(%)
C
(%)
YR
(%)
酶浓度
(mg/ml)
底物浓度
(mmol/L)
e.e.p > 90%
的重复使用次数
e.e.s
(%)
C
(%)
YR
(%)
酶浓度
(mg/ml)
底物浓度
(mmol/L)
e.e.s > 90%的
重复使用次数
环氧树脂ES-103B > 97 23 45 320 5 8 > 99 58 84 320 5 1
硅藻土 97 18 41 360 5 2 > 99 64 71 440 2.5 1
Table 2 Comparation of extracellaluar proteases of Bacillus sp. DL-2 immobilized by ES-103B and by kieselguhr in the asymmetric hydrolysis of (±)-1-phenylethyl acetate
[1]   Jadhav D D, Patil H S, Chaya P S , et al. Fungal mediated kinetic resolution of racemic acetates to (R)-alcohols using Fusarium proliferatum. Tetrahedron Letters, 2016,57(41):4563-4567.
doi: 10.1016/j.tetlet.2016.08.084
[2]   邹胜, 黄晴菲, 黄文才 , 等. 手性苯乙醇的制备. 合成化学, 2018,26(4):288-291.
[2]   Zou S, Huang Q F, Huang W C , et al. Preparation of chiral phenylethanol. Chinese Journal of Synthetic Chemistry, 2018,26(4):288-291.
[3]   Suan C L, Sarmidi M R . Immobilised lipase-catalysed resolution of (R,S)-1-phenylethanol in recirculated packed bed reactor. Journal of Molecular Catalysis B Enzymatic, 2004,28(2-3):111-119.
doi: 10.1016/j.molcatb.2004.02.004
[4]   De los Ríos A P, Van Rantwijk F, Sheldon R A . Effective resolution of 1-phenyl ethanol by Candida antarctica lipase B catalysed acylation with vinyl acetate in protic ionic liquids (PILs). Green Chemistry, 2012,14(6):1584-1588.
doi: 10.1039/c2gc35196j
[5]   Fan Y X, Xie Z M, Zhang H W , et al. Kinetic resolution of both 1-phenylethanol enantiomers produced by hydrolysis of 1-phenylethyl acetate with Candida antarctica lipase B in different solvent systems. Kinetics and Catalysis, 2011,52(5):686-690.
doi: 10.1134/S0023158411050065
[6]   Mihailovic M, Stojanovic M, Banjanac K , et al. Immobilization of lipase on epoxy-activated Purolite® A109 and its post-immobilization stabilization. Process Biochemistry, 2014,49(4):637-646.
doi: 10.1016/j.procbio.2014.01.013
[7]   Abaházi E, Lestál D, Boros Z , et al. Tailoring the spacer arm for covalent immobilization of Candida antarctica lipase B-thermal stabilization by bisepoxide-activated aminoalkyl resins in continuous-flow reactors. Molecules, 2016,21(6):767-785.
doi: 10.3390/molecules21060767 pmid: 27304947
[8]   Jiang X P, Lu T T, Liu C H , et al. Immobilization of dehydrogenase onto epoxy-functionalized nanoparticles for synthesis of (R)-mandelic acid. International Journal of Biological Macromolecules, 2016,88:9-17.
doi: 10.1016/j.ijbiomac.2016.03.031 pmid: 26995611
[9]   Zhao R, Lu J K, Tan T W . Preparation of polyglycidylmethacrylate macropore beads and application in Candida species 99-125 lipase immobilization. Chemical Engineering & Technology, 2011,34(1):93-97.
doi: 10.1252/kakoronbunshu1953.34.93
[10]   Tural B, Tarhan T, Tural S . Covalent immobilization of benzoylformate decarboxylase from Pseudomonas putida on magnetic epoxy support and its carboligation reactivity. Journal of Molecular Catalysis B: Enzymatic, 2014,102:188-194.
doi: 10.1002/chir.22477 pmid: 26147067
[11]   Zhang D H, Peng L J, Wang Y , et al. Lipase immobilization on epoxy-activated poly (vinyl acetate-acrylamide) microspheres. Colloids and Surfaces B: Biointerfaces, 2015,129:206-210.
doi: 10.1016/j.colsurfb.2015.03.056 pmid: 25863711
[12]   顾恺, 邹树平, 王志才 , 等. 环氧树脂固定化卤醇脱卤酶的研究. 现代化工, 2016,36(11):69-72.
[12]   Gu K, Zou S P, Wang Z C , et al. Immobilization of halohydrin dehalogenase by ES-103B epoxy resin. Modern Chemical Industry, 2016,36(11):69-72.
[13]   Adrio J L, Demain A L . Microbial enzymes: tools for biotechnological processes. Biomolecules, 2014,4(1):117-139.
doi: 10.3390/biom4010117 pmid: 24970208
[14]   Chaud L C S, Lario L D, Bonugli-Santos R C , et al. Improvement in extracellular protease production by the marine antarctic yeast Rhodotorula mucilaginosa L7. New Biotechnology, 2016,33(6):807-814.
doi: 10.1016/j.nbt.2016.07.016 pmid: 27474110
[15]   Banerjee G, Ray A K . Impact of microbial proteases on biotechnological industries. Biotechnology & Genetic Engineering Reviews, 2017,33(2):119-143.
doi: 10.1080/02648725.2017.1408256 pmid: 29205093
[16]   Wang Y L, Xu S, Li R Q , et al. Characterization of one novel microbial esterase WDEst9 and its use to make L-methyl lactate. Biocatalysis and Biotransformation, 2019,37(3):190-200.
doi: 10.1080/10242422.2018.1526926
[17]   Huang J L, Xu Y K, Zhang Y , et al. Utilization of one novel deep-sea microbial protease sin3406-1 in the preparation of ethyl (S)-3-hydroxybutyrate through kinetic resolution. World Journal of Microbiology and Biotechnology, 2018,34(9):124-134.
doi: 10.1007/s11274-018-2513-9 pmid: 30083971
[18]   Wang Y L, Xu Y K, Zhang Y , et al. Utilization of deep-sea microbial esterase PHE21 to generate chiral sec-butyl acetate through kinetic resolutions. Chirality, 2018,30(8):1027-1035.
doi: 10.1002/chir.22983 pmid: 29885046
[19]   Wang Y L, Xu Y K, Zhang Y , et al. Functional chacterization of salt-tolerant microbial esterase WDEst17 and its use in the generation of optically pure ethyl (R)-3-hydroxybutyrate. Chirality, 2018,30(6):769-776.
doi: 10.1002/chir.22847 pmid: 29573466
[20]   Deng D, Zhang Y, Sun A J , et al. Enantio-selective preparation of (S)-1-phenylethanol by a novel marine GDSL lipase MT6 with reverse stereo-selectivity. Chinese Journal of Catalysis, 2016,37(11):1966-1974.
doi: 10.1016/S1872-2067(16)62505-6
[21]   Huang J L, Zhang Y, Hu Y F . Functional characterization of a marine Bacillus esterase and its utilization in the stereo-selective production of D-methyl lactate. Applied Biochemistry and Biotechnology, 2016,180(8):1467-1481.
doi: 10.1007/s12010-016-2180-y pmid: 27364331
[22]   Wang Y L, Zhang Y, Hu Y F . Functional characterization of a robust marine microbial esterase and its utilization in the stereo-selective preparation of ethyl (S)-3-hydroxybutyrate. Applied Biochemistry and Biotechnology, 2016,180(6):1196-1212.
doi: 10.1007/s12010-016-2161-1 pmid: 27299920
[23]   Wang Y L, Zhang Y, Sun A J , et al. Characterization of a novel marine microbial esterase and its use to make D-methyl lactate. Chinese Journal of Catalysis, 2016,37(8):1396-1402.
doi: 10.1016/S1872-2067(16)62495-6
[24]   Deng D, Zhang Y, Sun A J , et al. Functional characterization of a novel Dactylosporangium esterase and its utilization in the asymmetric synthesis of (R)-methyl mandelate. Applied Biochemistry and Biotechnology, 2016,180(2):228-247.
doi: 10.1007/s12010-016-2095-7 pmid: 27118549
[25]   Deng D, Zhang Y, Sun A J , et al. Functional characterization of a novel marine microbial GDSL lipase and its utilization in the resolution of (±)-1-phenylethanol. Applied Biochemistry and Biotechnology, 2016,179(1):75-93.
doi: 10.1007/s12010-016-1980-4 pmid: 26754423
[26]   Liang J Y, Zhang Y, Sun A J , et al. Enantioselective resolution of (±)-1-phenylethanol and (±)-1-phenylethyl acetate by a novel esterase from Bacillus sp. SCSIO 15121. Applied Biochemistry and Biotechnology, 2016,178(3):558-575.
doi: 10.1007/s12010-015-1894-6 pmid: 26467742
[27]   Liang J Y, Sun A J, Zhang Y , et al. Functional characterization of a novel microbial esterase identified from the Indian Ocean and its use in the stereoselective preparation of (R)-methyl mandelate. Chinese Journal of Oceanology and Limnology, 2016,34(6):1269-1277.
doi: 10.1007/s00343-016-5164-4
[28]   黄锦龙, 张继福, 胡洁莹 , 等. 深海来源微生物乙酰酯酶的酶学性质鉴定及拆分制备D-乳酸甲酯. 热带海洋学报, 2018,37(4):38-44.
[28]   Huang J L, Zhang J F, Hu J Y , et al. Characterization of one deep-sea derived microbial acetyl esterase and its utilization in the preparation of D-methyl lactate through kinetic resolution. Journal of Tropical Oceanography, 2018,37(4):38-44.
[29]   公颜慧, 马三梅, 王永飞 , 等. 新颖深海微生物酯酶EstC11的酶学性质研究及其在手性拆分乙酸苏合香酯中的应用. 微生物学通报, 2018,45(8):1632-1640.
doi: 10.13344/j.microbiol.china.170850
[29]   Gong Y H, Ma S M, Wang Y F , et al. Characterization of a novel deep-sea microbial esterase EstC11 for enantioselective resolution of (±)-1-phenylethl acetate. Microbiology China, 2018,45(8):1632-1640.
doi: 10.13344/j.microbiol.china.170850
[30]   黄锦龙, 张云, 孙爱君 , 等. 一种新颖深海微生物羧酸酯酶制备(R)-苯乙醇的研究. 热带海洋学报, 2017,36(3):55-60.
[30]   Huang J L, Zhang Y, Sun A J , et al. Enantioselective production of (R)-1-phenylethanol by a novel marine microbial carboxylesterase. Journal of Tropical Oceanography, 2017,36(3):55-60.
[31]   Dong L, Xu Y K, Zhang Y , et al. Enantioselective resolution of (±)-1-phenylethyl acetate by extracellular proteases from deep-sea bacterium Bacillus sp. DL-2. Biocatalysis and Biotransformation, 2019,37(6):466-478.
doi: 10.1080/10242422.2019.1616697
[32]   Chen C S, Fujimoto Y, Girdaukas G , et al. Quantitative analyses of biochemical kinetic resolutions of enantiomers. Journal of the American Chemical Society, 1982,104(25):7294-7299.
doi: 10.1021/ja020083e pmid: 12071738
[33]   徐珊, 李任强, 张继福 , 等. 使用国产环氧树脂LXEP-120固定化脂肪酶研究. 广西师范大学学报(自然科学版), 2018,36(4):108-118.
[33]   Xu S, Li R Q, Zhang J F , et al. Immobilization of lipase using domestic epoxy resin LXEP-120. Journal of Guangxi Normal University (Natural Science Edition), 2018,36(4):108-118.
[34]   张跃冬, 陈必强, 谭天伟 . 固定化脂肪酶催化合成棕榈酸异辛酯的反应器制备研究. 北京化工大学学报(自然科学版), 2007,34(z2):114-117.
[34]   Zhang Y D, Chen B Q, Tan T W . Synthesis of iso-octyl palmitate in an immobilized lipase reactor. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2007,34(z2):114-117.
[35]   李宏亮, 胡晶, 谭天伟 . 固定化脂肪酶合成维生素 A 棕榈酸酯. 生物工程学报, 2008,24(5):817-820.
pmid: 18724702
[35]   Li H L, Hu J, Tan T W . Immobilized lipase catalyzed synthesis of vitamin A plamitate. Chinese Journal of Biotechnology, 2008,24(5):817-820.
pmid: 18724702
[36]   刘婷婷, 邓利, 鲁吉珂 , 等. 填充床反应器中酶法合成生物蜡酯. 化工进展, 2009,28(5):864-868.
[36]   Liu T T, Deng L, Lu J K , et al. Synthesis of wax ester in an immobilized packed-bed reactor. Chemical Industry and Engineering Progress, 2009,28(5):864-868.
[37]   Laudani C G, Habulin M, Knez Ž , et al. Immobilized lipase-mediated long-chain fatty acid esterification in dense carbon dioxide: Bench-scale packed-bed reactor study. Journal of Supercritical Fluids, 2007,41(1):74-81.
doi: 10.1016/j.supflu.2006.08.017
[1] YANG Yun-song,LIANG Jin-hua,YANG Xiao-rui,MA Yi-ming,JIN Shuang,SUN Yao-yao,ZHU Jian-liang. Research Progress in Oxidative Desulfurization of Diesel Oil Catalyzed by Enzymes[J]. China Biotechnology, 2021, 41(10): 109-115.
[2] Heng ZHU,Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. Covalent Immobilization of Marine Candida Rugosa Lipase Using Amino Carrier[J]. China Biotechnology, 2019, 39(7): 71-78.
[3] Feng-qin GONG,Qi-shun LIU,Hai-dong TAN,hua JIN,Cheng-yu TAN,Heng YIN. Immobilization of 5-Hydroxymethylfurfural Oxidase within MOFs for Catalysis[J]. China Biotechnology, 2019, 39(6): 41-47.
[4] Shan XU,Ren-qiang LI,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng Hu. Ethylene Glycol Diglycidyl Ether Cross-linked with Sodium Alginate- carboxymethyl Cellulose to Immobilize Lipase[J]. China Biotechnology, 2017, 37(12): 77-83.
[5] LI Li-juan, MA Gui-ping, ZHAO Lin-guo. Research Progress of Immobilized Enzyme Carriers[J]. China Biotechnology, 2015, 35(11): 105-113.
[6] HUANG Zhe Tao ZHANG Zhang-lin LIN. Immobilization of β-glucosidase with nano SiO2 and its application in soybean isoflavone hydrolysis in two-phase-system[J]. China Biotechnology, 2008, 28(6): 71-76.
[7] . Cross-linked Enzyme Aggregates and advances[J]. China Biotechnology, 2006, 26(0): 0-0.