Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (7): 79-84    DOI: 10.13523/j.cb.20190711
    
Advances in the Relationship Between microRNA and Chemotherapy Resistance of Lung Cancer
Pan-hong ZHANG,Lian-lian LI,Xiu-mei ZHANG,Jia-jun CUI,Yin-jie JIANG()
Medical College ,Yichun University, Yichun 336000, China
Download: HTML   PDF(421KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Chemotherapy resistance is one of the major challenges in the treatment of lung cancer. Chemotherapy resistance results in therapy failure and missing the opportunity of optimal therapy for some patients. Therefore, it is very important to study the mechanisms of chemotherapy resistance for lung cancer treatments. MicroRNA (miRNAs), small molecules of RNA, are involved in the regulation of various biological processes and play important roles in the therapy resistance of lung cancer. It’s shows that miRNAs regulate drug resistance by reducing the expression of multiple drug resistance-related genes or promoting cell escape apoptosis in cancer cells which treated with chemotherapeutic agents. However, the mechanism of microRNA-mediated drug resistance is not fully understood. Abnormal regulation of specific miRNAs may be associated with chemotherapy resistance to a variety of cancers, there by regulating the sensitivity of cancer cells to drugs in lung cancer. Here will systematically elaborate provide up-to-date understanding in the roles and mechanisms of miRNAs in chemotherapy resistance of lung cancer.



Key wordsLung cancer      Chemotherapy      Therapy resistance      microRNA     
Received: 20 November 2018      Published: 05 August 2019
ZTFLH:  Q819  
Corresponding Authors: Yin-jie JIANG     E-mail: jiangyinjie8@sina.com
Cite this article:

Pan-hong ZHANG,Lian-lian LI,Xiu-mei ZHANG,Jia-jun CUI,Yin-jie JIANG. Advances in the Relationship Between microRNA and Chemotherapy Resistance of Lung Cancer. China Biotechnology, 2019, 39(7): 79-84.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190711     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I7/79

[1]   Zheng D W, Dai Y, Wang S , et al. MicroRNA-299-3p promotes the sensibility of lung cancer to doxorubicin through directly targeting ABCE1. Int J Clin Exp Pathol, 2015,8(9):10072-10081.
[2]   Rossi G, Mengoli M C, Cavazza A , et al. Large cell carcinoma of the lung: clinically oriented classification integrating immunohistochemistry and molecular biology. Virchows Archiv, 2014,464(1):61-68.
doi: 10.1007/s00428-013-1501-6
[3]   Karachaliou N, Pilotto S, Lazzari C , et al. Cellular and molecular biology of small cell lung cancer: an overview. Transl Lung Cancer Res, 2016,5(1):2-15.
[4]   Sarkar F H, Li Y, Wang Z , et al. Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resistance Updates, 2010,13(3):57-66.
doi: 10.1016/j.drup.2010.02.001
[5]   Gomes B C, Rueff J, Rodrigues A S . MicroRNAs and cancer drug resistance. Methods in Molecular Biology, 2016,1395(9):137-162.
doi: 10.1007/978-1-4939-3347-1
[6]   Gong J, Jaiswal R, Mathys J M , et al. Microparticles and their emerging role in cancer multidrug resistance. Cancer Treatment Reviews, 2012,38(3):226-234.
doi: 10.1016/j.ctrv.2011.06.005
[7]   Gebert Luca F R, MacRae Ian J . Regulation of microRNA function in animals. Nat Rev Mol Cell Biol, 2019,20(1):21-37.
[8]   Lu J, Getz G, Miska Eric A , et al. MicroRNA expression profiles classify human cancers. Nature, 2005,435(7043):834-838.
[9]   Bracken Cameron P, Scott Hamish S, Goodall Gregory J . A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet, 2016,17(12):719-732.
[10]   Bartel David P . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281-297.
doi: 10.1016/S0092-8674(04)00045-5
[11]   Feng T, Xiao X, Sheng W , et al. Research progress on lung cancer therapy and the mechanism of microRNA in lung cancer and its drug resistance. Medical Recapitulate, 2018,1(24):61-65.
[12]   Carrington J C, Ambros V . Role of microRNAs in plant and animal development. Science, 2003,301(5631):336-338.
doi: 10.1126/science.1085242
[13]   Kim V N . MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews Molecular Cell Biology, 2005,6(5):376-385.
[14]   Lee Y, Kim M, Han J , et al. MicroRNA genes are transcribed by RNA polymerase II. Embo Journal, 2004,23(20):4051-4060.
doi: 10.1038/sj.emboj.7600385
[15]   Cai X Z, Hagedorn Curt H, Cullen Bryan R . Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 2004,10(12):1957-1966.
doi: 10.1261/rna.7135204
[16]   Lee Y, Ahn C, Han J , et al. The nuclear RNase III drosha initiates microRNA processing. Nature, 2003,425(6956):415-419.
[17]   Han J, Lee Y, Yeom K H , et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes & Development, 2004,18(24):3016-3027.
[18]   Winter J, Jung S, Keller S , et al. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biology, 2009,11(3):228-234.
[19]   Lee Y, Hur I, Park S , et al. The role of PACT in the RNA silencing pathway. Embo Journal, 2006,25(3):522-532.
doi: 10.1038/sj.emboj.7600942
[20]   Ambros V . The functions of animal microRNAs. Nature, 2004,431(7006):350-355.
[21]   Lytle J R, Yario T A, Steitz J A . Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. Proc Natl Acad Sci USA, 2007,104(23):9667-9672.
doi: 10.1073/pnas.0703820104
[22]   Vasudevan S, Tong Y C, Steitz J A . Switching from repression to activation: microRNAs can up-regulate translation. Science, 2007,318(5858):1931-1934.
doi: 10.1126/science.1149460
[23]   Calin G A, Sevignani C, Dumitru C D , et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(9):2999-3004.
doi: 10.1073/pnas.0307323101
[24]   Lin S, Gregory R I . MicroRNA biogenesis pathways in cancer. Nature Reviews Cancer, 2015,15(6):321-333.
[25]   Ebrahimi S, Hashemy S I . MicroRNA-mediated redox regulation modulates therapy resistance in cancer cells: clinical perspectives. Cell Oncol (Dordr), 2019,42(2):131-141.
[26]   Takamizawa J, Konishi H, Yanagisawa K , et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Research, 2004,64(11):3753-3756.
doi: 10.1158/0008-5472.CAN-04-0637
[27]   Johnson C D, Esquelakerscher A, Stefani G , et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Research, 2007,67(16):7713-7722.
doi: 10.1158/0008-5472.CAN-07-1083
[28]   Pan X, Wang Z X, Wang R . MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biology & Therapy, 2010,10(12):1224-1232.
[29]   Zhang J G, Wang J J, Zhao F , et al. MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clinica Chimica Acta, 2010,411(11-12):846-852.
doi: 10.1016/j.cca.2010.02.074
[30]   Shi L, Chen J, Yang J . MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Research, 2010,1352(1):255-264.
doi: 10.1016/j.brainres.2010.07.009
[31]   Wang P, Guan Q Y, Zhou D M , et al. miR-21 inhibitors modulate biological functions of gastric cancer cells via PTEN/PI3K/mTOR pathway. DNA Cell Biol, 2018,37(1):38-45.
doi: 10.1089/dna.2017.3922
[32]   Li X F, Zang A M, Jia Y C , et al. Triptolide reduces proliferation and enhances apoptosis of human non-small cell lung cancer cells through PTEN by targeting miR-21. Mol Med Rep, 2016,13(3):2763-2768.
doi: 10.3892/mmr.2016.4844
[33]   Liu Z L, Wang H, Liu J , et al. MicroRNA-21 (miR-21) expression promotes growth, metastasis, and chemo- or radioresistance in non-small cell lung cancer cells by targeting PTEN. Molecular & Cellular Biochemistry, 2013,372(1-2):35-45.
[34]   Jing C W, Cao H X, Qin X B , et al. Exosome-mediated gefitinib resistance in lung cancer HCC827 cells via delivery of miR-21. Oncol Lett, 2018,15(6):9811-9817.
[35]   Blower P E, Chung J H, Verducci J S , et al. MicroRNAs modulate the chemosensitivity of tumor cells. Molecular Cancer Therapeutics, 2008,7(1):1-9.
[36]   He L, Thomson J M, Hemann M T , et al. A microRNA polycistron as a potential human oncogene. Nature, 2005,435(7043):828-833.
[37]   O’Donnell K A, Wentzel E A, Zeller K I , et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 2005,435(7043):839-843.
[38]   Dews M, Homayouni A, Yu D , et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics, 2006,38(9):1060-1065.
[39]   Bian H B, Pan X, Yang J S , et al. Upregulation of microRNA-451 increases cisplatin sensitivity of non-small cell lung cancer cell line (A549). Journal of Experimental & Clinical Cancer Research, 2011,30(1):20-31.
[40]   Mochida Y, Cabral H, Kataoka K , et al. Polymeric micelles for targeted tumor therapy of platinum anticancer drugs. Expert Opin Drug Deliv, 2017,14(12):1-5.
doi: 10.1080/17425247.2017.1262346
[41]   Previati M, Lanzoni I, Corbacella E , et al. RNA expression induced by cisplatin in an organ of corti-derived immortalized cell line. Hearing Research, 2004,196(1):8-18.
doi: 10.1016/j.heares.2004.04.009
[42]   Lu P, Li Y, Hu D , et al. Recent developments of platinum-based anticancer drugs- detection and analysis in biological samples. Current Organic Chemistry, 2015,19(10):265-266.
[43]   Siddik Z H . Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene, 2003,22(47):7265-7279.
[44]   Tylkowski B, Jastrzab R, Odani A . Developments in platinum anticancer drugse. Physical SciencesReviews, 2016,6(10):143-145.
[45]   Zhu W, Xu H, Zhu D X , et al. miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP. Cancer Chemotherapy & Pharmacology, 2012,69(3):723-731.
[46]   Zhu W, Zhu D, Lu S , et al. miR-497 modulates multidrug resistance of human cancer cell lines by targeting BCL2. Medical Oncology, 2012,29(1):384-391.
doi: 10.1007/s12032-010-9797-4
[47]   Zang Y S, Zhong Y F, Fang Z , et al. MiR-155 inhibits the sensitivity of lung cancer cells to cisplatin via negative regulation of Apaf-1 expression. Cancer Gene Therapy, 2012,19(11):773-778.
[48]   Huang R S, Zheng Y L, Zhao J , et al. microRNA-381 suppresses the growth and increases cisplatin sensitivity in non-small cell lung cancer cells through inhibition of nuclear factor-κB signaling. Biomed Pharmacother, 2018,98(12):538-544.
doi: 10.1016/j.biopha.2017.12.092
[49]   Gelfand V I, Bershadsky A D . Microtubule dynamics: mechanism, regulation, and function. Annu Rev Cell Biol, 1991,7(7):93-116.
doi: 10.1146/annurev.cb.07.110191.000521
[50]   Rui W, Bing F, Haizhu S , et al. Identification of microRNA profiles in docetaxel-resistant human non-small cell lung carcinoma cells (SPC-A1). Journal of Cellular & Molecular Medicine, 2010,14(1-2):206-214.
[51]   Feng B, Wang R, Song H Z , et al. MicroRNA-200b reverses chemoresistance of docetaxel-resistant human lung adenocarcinoma cells by targeting E2F3. Cancer, 2012,118(13):3365-3376.
doi: 10.1002/cncr.26560
[52]   Du L, Subauste M C, Desevo C , et al. miR-337-3p and its targets, STAT3, and, RAP1A, modulate taxane sensitivity in non-small cell lung cancers. PLoS One, 2012,7(6):e39167-e39177.
doi: 10.1371/journal.pone.0039167
[53]   Díaz-Serrano A, Gella P, Jiménez E , et al. Targeting EGFR in lung cancer: current standards and developments. Drugs, 2018,78(9):893-911.
[54]   Chen S, Wang Q, Zhou X M , et al. MicroRNA-27b reverses docetaxel resistance of non-small cell lung carcinoma cells via targeting epithelial growth factor receptor. Mol Med Rep, 2016,14(1):949-954.
doi: 10.3892/mmr.2016.5332
[55]   Nasser M W, Datta J, Nuovo G , et al. Down-regulation of micro-RNA-1 (miR-1) in lung cancer suppress of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. Journal of Biological Chemistry, 2008,283(48):33394-33405.
doi: 10.1074/jbc.M804788200
[56]   Tsukigawa K, Liao L, Nakamura H , et al. Synthesis and therapeutic effect of styrene-maleic acid copolymer-conjugated pirarubicin. Cancer Sci, 2015,106(3):270-278.
doi: 10.1111/cas.2015.106.issue-3
[57]   Lee J, Choi K J, Moon S U , et al. Theragnosis-based combined cancer therapy using doxorubicin-conjugated microRNA-221 molecular beaconn. Biomaterials, 2016,74(10):109-118.
doi: 10.1016/j.biomaterials.2015.09.036
[58]   Sokol N S, Ambros V . Mesodermally expressed drosophila microRNA-1 is regulated by twist and is required in muscles during larval growth. Genes Dev, 2005,19(19):2343-2354.
doi: 10.1101/gad.1356105
[59]   Chen J F, Mandel E M, Thomson J M , et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 2006,38(2):228-233.
[60]   Crawford M, Batte K L . MicroRNA 133B targets pro-survival molecules MCL-1 and BCL2L2 in lung cancer. Biochem Biophys Res Commun, 2009,388(3):483-489.
doi: 10.1016/j.bbrc.2009.07.143
[1] CHEN Yu-qiong,TAN Wen-hua,LIU Hai-feng,CHEN Gen. Protective Effect of miR-29a on Lipopolysaccharide-induced Human Pulmonary Microvascular Endothelial Cells Injury by Targeting PTEN Expression[J]. China Biotechnology, 2021, 41(5): 8-16.
[2] SHEN Bing-lei,WANG Yu-xuan,HAN Shuo,LI Xi,YANG Zhuo-ni-na,ZOU Zi-wen,LIU Juan. Research Progress of Non-coding RNA in Autophagy[J]. China Biotechnology, 2019, 39(12): 56-63.
[3] DAI Li-ting, WU Zhong-nan, HUANG Xiang, YANG Jie, ZENG Hui-lan, WANG Guo-cai, JIANG Jian-wei. Molecular Mechanism of Inducing GLC-82 Cells Apoptosis by Ethanol Extract from Wedelia prostrate(Hook.et Arn.) Hemsl[J]. China Biotechnology, 2017, 37(8): 1-7.
[4] LUO Jia, SHEN Lin yuan, LI Qiang, LI Xue wei, ZHANG Shun hua, ZHU Li. Research Progress of RNA Editing in Mammal Acting on Non-coding RNA[J]. China Biotechnology, 2016, 36(11): 76-82.
[5] XIN Jing, XU Yin-sheng, ZHANG Fang, SHENG Wang. The Function and Mechanism of MicroRNA-124 in Human Cervical Cancer[J]. China Biotechnology, 2015, 35(10): 13-19.
[6] YI Shou-hui, WANG Dong-lin, WU Zhi-juan, YANG Wen-ying, ZHAO Qi-cheng, CHEN Xiao-pin. Effect of MUC1 on Biological Behaviour of Human Colorectal Cancer Cell HCT116[J]. China Biotechnology, 2015, 35(1): 15-20.
[7] MAN Chao-lai, TANG Gao-xia, ZHAO Li, LI Feng, ZHEN Xin. DNA Methylation and microRNAs[J]. China Biotechnology, 2014, 34(8): 81-87.
[8] MAN Chao-lai, YANG Mei-ling. Research Progress in Circulating MicroRNAs of Body Fluid[J]. China Biotechnology, 2014, 34(2): 104-108.
[9] MAN Chao-lai, CHANG Yang, TANG Gao-xia, ZHAO Li, LI Feng, ZHEN Xin, MI Xiao-ju. Research Progress of Genetic Adjuvant[J]. China Biotechnology, 2013, 33(7): 112-117.
[10] LI Qin, HE Lin, HUI Lin-ping, ZHAO Chen-yang, YU Tao. T4 Bacteriophage Displaying VEGF-binding Domains of KDR Inhibits the Proliferation and Invasion of Lung Cancer Cells[J]. China Biotechnology, 2013, 33(10): 14-20.
[11] SHI Lei, TANG Li-li, MA Xing-yuan, WANG Tian-wen, MA Fei, WANG Ping. Efficient Preparation of an Anti-tumor Protein TmSm by Reversible Phase Transition of ELPs and Self-cleaving Function of Intein[J]. China Biotechnology, 2013, 33(10): 89-95.
[12] XU Ying-chen, GUAN Li-dong, ZHOU Jun-nian, ZENG Quan, YUAN Hong-feng, LI Si-ting, GUAN Zhao-xuan, HE Li-juan, NAN Xue, CHEN Lin, YUE Wen, PEI Xue-tao. Isolation and Identification of Liver Cancer Stem Cells and Analysis of Differentially Expressed MicroRNAs[J]. China Biotechnology, 2013, 33(1): 1-7.
[13] DONG Yuan-yuan, LI Hai-yan, LI Xiao-kun, YANG Shu-lin. Bioinformatics Prediction of microRNAs and Targets from Safflower[J]. China Biotechnology, 2012, 32(10): 33-38.
[14] TANG De-ping, MAO Ai-hong, LIAO Shi-qi, XUE Lin-gui, ZHANG Bing-lin. The Types of siRNA Off-target Effects and the Strategies for Mitigation[J]. China Biotechnology, 2012, 32(07): 113-119.
[15] LV Wei-dong, DU Chao-chao, WANG Hong, JIANG Hao-wu, LAO Xue-jun, SONG Qi-fang, DENG Ning. High Level Expression of Human ScFv against bFGF in Pichia pastoris[J]. China Biotechnology, 2012, 32(05): 31-35.