Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (7): 56-63    DOI: 10.13523/j.cb.20170711
    
The Role of CodY in the Regulation of Flagellar Motility and Virulence in Listeria monocytogenes
ZHANG Ying, TANG Yu-qian, SHEN Yi, LUO Qin
Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
Download: HTML   PDF(771KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Objective: To explore the function of the transcription factor CodY on flagellar motility, bacterial virulencein Listeria monocytogenes. Methods: The codY gene on the L.monocytogenes chromosome was knocked out by homologous recombination and the strain of the deleted codY gene was successfully complemented by the codY gene construct;the results were evaluated by observation of the motilityof flagellar movement, the transcriptional expression of flagellum-related genes with RT-qPCR.The effects of wild-type strain EGDe and CodY-deficient strain on bacterial hemolytic activity, semi-lethal dose of Helicoverpa armigera and the main virulence factor LLO(coding gene hly) and virulence regulatory protein PrfA(coding gene prfA) transcription expression profiles were compared.Results: Compared with the wild-type strain, the CodY-deficient strain showed a significant reduction in the flagellar movement, the hemolytic activity, as well as the transcriptional expression of flagellum-related genes and the major virulence genes hly and prfA(P ≤ 0.01); while the semi-lethal dose on Helicoverpa armigera (Hübner) was increased 5.8 fold.Conclusion: The CodY plays an important role in flagellar motility and transcription regulation ofbacterial virulence in Listeria monocytogenes.

Key wordsListeria monocytogenes      Virulence      CodY      Flagellar motility     
Received: 13 February 2017      Published: 25 July 2017
ZTFLH:  Q815  
Cite this article:

ZHANG Ying, TANG Yu-qian, SHEN Yi, LUO Qin. The Role of CodY in the Regulation of Flagellar Motility and Virulence in Listeria monocytogenes. China Biotechnology, 2017, 37(7): 56-63.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170711     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I7/56

[1] Sonenshein A L. CodY, a global regulator of stationary phase and virulence in Gram-positive bacteria.Curr Opin Microbiol,2005, 8(2): 203-207.
[2] Molle V, Nakaura Y, Shivers R P, et al. Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-widetranscript analysis. J Bacteriol,2003, 185(6): 1911-1922.
[3] Sonenshein A L. Control of key metabolic intersections in Bacillus subtilis. Nat Rev Microbiol, 2007, 5(12): 917-927.
[4] Claverys J P, Prudhomme M, Martin B. Induction of competence regulons as general stress responsesin Gram-positive bacteria. Annu Rev Microbiol, 2006,60(1):451-475.
[5] Majerczyk C D, Dunman P M, Luong T T, et al. Directtargets of CodY in Staphylococcus aureus. J Bacteriol, 2010, 192(11): 2861-2877.
[6] Majerczyk C D, Sadykov M R, Luong T T, et al. Staphylococcu saureus CodY negatively regulates virulence geneexpression. J Bacteriol, 2008, 190(7): 2257-2265.
[7] PohlK, FrancoisP, Stenz L, et al.CodY in Staphylococcus aureus: a regulatorylink between metabolism and virulence geneexpression. J Bacteriol, 2009, 191(9): 2953-2963.
[8] Ramaswamy, Cresence V, Rejitha V M, et al. Listeria--review of epidemiology and pathogenesis. Microbiol Immunol Infect, 2007, 40(1): 4-13.
[9] Rocourt J, BenEmbarek P, Toyofuku H, et al. Quantitative risk assessment of Listeria monocytogenes in ready-to-eat foods: the FAO/WHO approach. FEMS Immunology and Medical Microbiology, 2003, 35(3): 263-267.
[10] Vazquez-Boland J A, Kuhn M, Berche P, et al. Listeria pathogenesis and molecular virulence determinants. Clinical Microbiology Reviews, 2001, 14(3): 584-640.
[11] Rabinovich L, Sigal N, Borovok I, et al. Prophage excision activates Listeria competence genes that promote phagosomal escapeand virulence. Cell, 2012, 150(4): 792-802.
[12] Heras A, Cain R J, Bielecka M K, et al. Regulation of Listeria virulence: PrfAmaster and commander. Curr Opin Microbiol, 2011, 14(2): 118-127.
[13] Luo Q, Zhou Q C, Deng L F, et al. Some essential elements on the inlC promoter for PrfA-dependent regulation in Listeria monocytogenes. Acta Microbiologica Sinica, 2007, 47(1): 22-28.
[14] Salazar J K, Wu Z, McMullen P D, et al. PrfA-like transcription factor gene lmo0753 contributes to L-rhamnose utilization in Listeria monocytogene strains associated with human food-borne infections. Appl Environ Microbiol, 2013, 79(18): 5584-5592.
[15] Wadhams G H, Armitage J P. Making sense of it all: bacterial chemotaxis. NAT Rev Mol Cell Biol, 2004, 5(12): 1024-1037.
[16] Giron J A, Torres A G, Freer E, et al. The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol Microbiol, 2002, 44(2): 361-379.
[17] Josenhans C, Suerbaum S. The role of motility as a virulence factor in bacteria. Int J Med Microbiol, 2002, 291(8): 605-614.
[18] Geiger T, Wolz C. Intersection of the stringent response and the CodY regulon in low GC Gram-positivebacteria. Int J Med Microbiol, 2014, 304(2):150-155.
[19] Sonenshein A L. Cod Y, a global regulator of stationary phase and virulence in Gram-positive bacteria.Current Opinion in Microbiology, 2005, 8(2):203-210.
[20] Stenz L, Francois P, Whiteson K, et al. The CodY pleiotropic repressor controlsn virulence in gram-positive pathogens. FEMS Immunology and Medical Microbiology, 2011, 62(2):123-139.
[21] Bennett H J, Pearce D M, Glenn S, et al. Characterization of relA and codY mutants of Listeria monocytogenes: identification of the CodY regulon and its role in virulence. Mol Microbiol, 2007, 63(5): 1453-1520.
[22] Glaser P, Frangeul L, Bunchrieser C, et al. Comparative genomics of Listeria species. Science, 2001, 294(26): 849-852.
[23] 王莉, 冯飞飞, 张强, 等. 单核细胞增生李斯特菌毒力基因inlB/actA双缺失突变株的构建. 生物技术通报, 2010, 0(11): 182-185. Wang L, Feng F F, Zhang Q, et al. Construction of a mutant strain of Listeria monocytogenes with a deletion of inlB and actA. Biotechnology Bulletin, 2010, 0(11): 182-185.
[24] Lobel L, Herskovits A A. Systems level analyses reveal multiple regulatory activities of CodY controlling metabolism, motility and virculence in Listeria monocytogenes. PLoS Genet, 2016, 12(2): 45-72.
[25] 于新惠, 张颖, 王文静, 等.rmlB基因在单核细胞增生李斯特菌耐药性、生物被膜形成和毒力方面的研究. 微生物学通报, 2017, 44(1): 161-171. Yu X H, Zhang Y, Wang W J, et al. Contribution of rmlB in envelope-acting a antibiotic resistance biofilm formation and virulence in Listeria monocytogenes. Microbiology China, 2017, 44(1): 161-171.
[26] Metlina A L. Prokaryotic flagella as biological motility system. Uspekhi Biol Khim, 2001, 41(2): 229-282.
[27] Keseler I M, Collado-Vides J, Santos-Zavaleta A, et al. EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res, 2011, 39(3): 583-590.
[28] Chilcott G S, Huqhes K T. Coupling of the flagellar gene expression to flagellar assembly in Salmon ellaenterica, serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev, 2000, 64(4): 694-708.
[1] Wen-jing WANG,Li-yu YANG,Chan-juan LIU,Jin ZHAO,Qin LUO. Effect of Glutamate Dehydrogenase Deletion on Biofilm Formation,Virulence and Extracellular Proteins Expression of Listeria monocytogenes[J]. China Biotechnology, 2018, 38(9): 1-11.
[2] Jing-xian LIU,Xin HE,Hui-ming HAN. New Progress in the Study of Streptococcus suis Type 2 Virulence Factors[J]. China Biotechnology, 2018, 38(3): 97-104.
[3] LI Juan, LIU Li-na, HU Dan, ZHU XU-hui, GONG Xiu-fang, ZHAO Lin, ZHONG Jing-hao, PAN Xiu-zhen, WANG Chang-jun. Construction and Virulence Analysis of MocR Transcription Regulator SSU0562 Gene Knock-out Mutant in Streptococcus suis Serotype2[J]. China Biotechnology, 2015, 35(7): 8-14.
[4] JIANG Li-han, CHENG Xiao-long, QU Hui-ping, HUANG Yi-yi, WANG Shu-jia, LUO Qin. Effect of the Deletion of CcpA on Virulence in Listeria monocytogenes[J]. China Biotechnology, 2014, 34(8): 29-34.
[5] DA Fei, HOU Zheng, MENG Jing-ru, JIA Min, LUO Xiao-xing. Blocking Methicilli-Resistant Staphylococcus Aureus Agr Quorom Sensing System by Antisense LNA[J]. China Biotechnology, 2013, 33(5): 1-6.
[6] ZOU Zhi. Advances on Factors Influencing Induction of Agrobacterium tumefaciens Virulence Genes[J]. China Biotechnology, 2011, 31(7): 126-132.
[7] NIU Qiu-Gong, DONG Bing-Xue, HUANG Sai-Liang, HUI Feng-Li, KE Chao, ZHANG Lin. Screening, Identification and Virulence Factor Determination of the Bacteria with Nematicidal Activity to Bursaphelenchus xylophilus[J]. China Biotechnology, 2010, 30(08): 76-81.
[8] NIAN Hong-Juan, CHEN Li-Mei, LI Hun-Zhi. Application of Tn5 Transposon Mutagenesis Technology in Molecular and Genetic Researches of Gramnegative Bacteria[J]. China Biotechnology, 2009, 29(12): 114-118.
[9] . Research Progress in Accessory Gene Regulatory System of Staphylococcus aureus[J]. China Biotechnology, 2008, 28(6): 93-99.
[10] . Construction of a Salmonella Typhimurium PhoQ Gene recombinant strain and Detection their Virulence[J]. China Biotechnology, 2008, 28(4): 32-36.
[11] . The Progress in Research on Avirulence Gene of the Rice Blast Fungus[J]. China Biotechnology, 2006, 26(12): 112-116.