Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (9): 48-55    DOI: 10.13523/j.cb.20140908
    
Effects of Disrupting Acetate Formation Pathways in Corynebacterium acetoacidophilum on Succinate Production Under Oxygen Deprivation
LIU Wei, ZHENG Pu, JIN Xin-na
The Key Laboratory of Industrial Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(861KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to reduce acetate production and improve succinate production and explore the main acetate formation pathways of C.acetoacidophilum, gene of pta, ackA, ctfA and aceE, which encoded phosphotransacetylase, acetate kinase, CoA-transfease and pyruvate dehydrogenase complex in C.acetoacidophilum were disrupted respectively by the means of homologous recombination. In C.acetoacidophilum ΔldhAΔpta-ackA, the titer of acetate, gluocse consumption rate, and both yields of acetate and succinate were found to be similar to that of C.acetoacidophilum ΔldhA. Furthermore, the titer and yield of acetate decreased by 81.4% and 77.2%, respectively, the glucose consumption rate decreased by 28.3% and the yield of succinate increased by 25.3% in C.acetoacidophilum ΔldhAΔctfAΔpta-ackA. In addition, when gene aceE was deleted, C. acetoacidophilum ΔldhAΔaceE almost produced no acetate, the glucose consumption rate decrease by 35.6% and the yield of succinate increased by 34.7%. Under oxygen deprivation, almost all acetate formed through acetyl-CoA in C.acetoacidophilum. Gene pta, ackA and ctfA were the main genes of acetate formation pathways from acetyl-CoA. Disrupting gene aceE could cut off acetate synthesis in C.acetoacidophilum, and effectively increase succinate production.



Key wordsCorynebacterium acetoacidophilum      Acetate      Succinate      Metabolic disruption     
Received: 30 June 2014      Published: 25 September 2014
ZTFLH:  Q784  
Cite this article:

LIU Wei, ZHENG Pu, JIN Xin-na. Effects of Disrupting Acetate Formation Pathways in Corynebacterium acetoacidophilum on Succinate Production Under Oxygen Deprivation. China Biotechnology, 2014, 34(9): 48-55.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140908     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I9/48


[1] Shiio I. Process for producing L-glutamic acid. U.S. Patent 117915, 1964.

[2] Kinoshita S, Udaka S, Akita S, et al. Method of producing L-glutamic acid by fementation. U.S. Patent 3003925, 1961.

[3] 于芳,郑璞,倪晔,等. 碳酸盐对谷氨酸产生菌在缺氧条件下产有机酸的影响. 生物加工过程, 2011, 9(5): 22-26. Yu F, Zheng P, Ni Y, et al. Influence of bicarbonate on organic acid of glutamic acid-producing bacteria under oxygen deprivation. Chinese Journal of Bioprocess Engineering, 2011, 9(5): 22-26.

[4] 于芳. 谷氨酸棒杆菌产琥珀酸研究. 无锡:江南大学,2012. Yu F. Study on succinic acid production by Corynebacterium glutamicum. Wuxi: Jiangnan University, 2012.

[5] 杨倩,郑璞,于芳,等. 嗜乙酰乙酸棒杆菌Corynebacterium acetoacidophilum-Δldh缺氧条件下代谢葡萄糖途径的变化. 生物工程学报,2014, 30(3): 435-444. Yang Q, Zheng P, Yu F, et al. Metabolic shift of Corynebacterium acetoacidophilum-Δldh under oxygen deprivation conditions. Chinese Journal of Biotechnology, 2014, 30(3): 435-444.

[6] Dittrich C R, Vadali R V, Bennett G N, et al. Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E.coli mutant strains with deletion of ackA-pta and poxB pathways for the synthesis of isoamyl acetate. Biotechnology Progress, 2005, 21(2): 627-631.

[7] Yasuda K, Jojima T, Suda M, et al. Analyses of the acetate-producing pathways in Corynebacterium glutamicum under oxygen-deprived conditions. Applied Microbiology and Biotechnology, 2007, 77(4): 853-860.

[8] Litsanov B, Kabus A, Brocker M, et al. Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum. Microbial Biotechnology, 2012, 5(1): 116-128.

[9] Litsanov B, Brocker M, Bott M. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Applied and Environmental Microbiology, 2012, 78(9): 3325-3337.

[10] Zhu N Q, Xia H H, Wang Z W, et al. Engineering of acetate recycling and citrate synthase to improve aerobic succinate production in Corynebacterium glutamicum. PloS ONE, 2013, 8(4): e60659.

[11] Yao W J, Deng X Z, Zhong H, et al. Double deletion of dtsR1 and pyc induce efficient L-glutamate overproduction in Corynebacterium glutamicum. Journal of Industrial Microbiology and Biotechnology, 2009, 36(7): 911-921.

[12] 余秉琦,沈微,诸葛健. 适用于异源 DNA 高效整合转化的谷氨酸棒杆菌电转化法. 中国生物工程杂志,2005, 25(2): 78-81. Yu B Q, Shen W, ZhuGe J. An improved method for integrative electrotransformation of Corynebacterium glutamicum with xenogeneic DNA. China Biotechnology, 2005, 25(2): 78-81.

[13] Molenaar D, Van der Rest M E, Lange C. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Applied Microbiology and Biotechnology, 1999, 52(4): 541-545.

[14] Inui M, Murakami S, Okino S, et al. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. Journal of Molecular Microbiology and Biotechnology, 2004, 7(4): 182-196.

[15] 黄培堂. 分子克隆实验指南. 第三版. 北京:科学出版社,2002, 91-93. Huang PT. Molecular Cloning: a laboratory manual. Third edition. Beijing: Science Press, 2002, 91-93.

[16] Horton R M. PCR-mediated recombination and mutagenesis. SOEing together tailor-made genes. Molecular Biotechnology, 1995, 3(2):93-99.

[17] Liu Y P, Zheng P, Sun Z H, et al. Strategies of pH control and glucose fed batch fermentation for production of succinic acid by Actinobacillus succinogenes CGMCC1593. Journal of Chemical Technology and Biotechnology, 2008, 83(5): 722-729.

[18] 刘学胜,贾全栋,张伟国. 产丁二酸谷氨酸棒状杆菌基因缺失代谢工程菌株的构建. 微生物学通报,2013, 40(5): 739-748. Liu X S, Jia Q D, Zhang W G. Construction a metabolic engineering strain to produce succinic acid from Corynebacterium glutamicum by gene deletion mutation. Microbiology China, 2013, 40(5): 739-748.

[19] 贾全栋,刘学胜,郭燕风,等. 谷氨酸棒状杆菌厌氧产丁二酸的发酵条件. 生物加工过程,2014, 12(3): 7-11. Jia Q D, Liu X S, Guo Y F, et al. Influence of lactate dehydrogenase gene knockout on anaerobic production of succinic acid by Corynebacterium glutamicum. Chinese Journal of Bioprocess Engineering, 2013, 12(3): 739-748.

[20] Wang C, Zhang H L, Cai H, et al. Succinic acid production from corn hydrolysates by genetically engineered Corynebacterium glutamicum. Applied Biochemistry and Biotechnology, 2014, 172(1): 340-350.

[21] Sanchez A M, Bennett G N, San K Y. Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Biotechnology Progress, 2005, 21(2): 358-365.

[22] 岳方方,姜岷,马江峰,等. 产琥珀酸大肠杆菌工程菌株的构建. 中国酿造,2010, (2): 25-29. Yue F F, Jiang M, Ma J F, et al. Construction of engineered Escherichia coli for succinate production. China Brewing, 2010, (2): 25-29.

[1] DONG Lu,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Extracellaluar Proteases of Bacillus sp. DL-2 Using Epoxy Resin to Asymmetrically Hydrolyze (±)-1-Phenylethyl Acetate[J]. China Biotechnology, 2020, 40(4): 49-58.
[2] WANG Hao, ZHANG Jing-shu, DING Jian, LUO Hong-zhen, CHEN Rui, SHI Zhong-ping. Control of Acetone Concentration and Acetone/Butanol Ratio in ABE Fermentation by C. acetobutylicum with a Novel Glucose/Acetate Co-substrate System Incorporating Glucose Limitation[J]. China Biotechnology, 2016, 36(10): 60-71.
[3] HAO Zi-kai, LI Pi-wu, HAO Zhao-cheng, CHEN Li-fei. Effect of Knockouting frdB on Anaerobic Mixed Acid Fermentation for Escherichia coli[J]. China Biotechnology, 2014, 34(11): 67-75.
[4] LIN Na, GAO Ji-hai, AI Tao-bo, FAN Lin-hong, WANG Sheng-hua, CHEN Fang. A Novel Method of Total RNA Extraction from Leaves of Cinnamomum longepaniculatum[J]. China Biotechnology, 2013, 33(5): 107-111.
[5] ZHANG Yang, DU Shan-shan, XIE Xi-xan, XU Qing-yang, CHEN Ning. Effect of purA Gene Overexpression on Adenosine Accumulation[J]. China Biotechnology, 2011, 31(12): 22-26.
[6] . Succinate Production from Escherichia coli Mutant QQS101 Fermentation[J]. China Biotechnology, 2010, 30(10): 0-0.
[7] LI Yi-kui, KANG Jun-hua, KANG Zhen, GENG Yan-ping, WANG Yi-hua, QI Qing-sheng. Succinate Production from Escherichia coli Mutant QQS101 Fermentation[J]. China Biotechnology, 2010, 30(10): 39-43.
[8] XU Li, MA Jiang-Feng, YUE Fang-Fang, LIU Shu-Wen, JIANG Min. Fermentation Characteristics Research of Recombinant Escherichia coli for Succinate Production[J]. China Biotechnology, 2010, 30(09): 43-48.
[9] RAO Zhi-Meng, XU Mei-Juan, LIU Yuan-Xiu, ZHOU Chen, LA Chun-Yan, DOU Wen-Fang, ZHANG Xiao-Mei-Hu, HONG Yu, HU Zheng-Hong. Cloning, Expression and Analysis of the argH Gene Encoding Argininosuccinate  Lyase from Corynebacterium crenatum[J]. China Biotechnology, 2010, 30(09): 49-55.
[10] Huang Ying Huan Gao Hai Zhen . Immobilized Lipases Cooperates to Catalyze Transesterification Reaction of Lard[J]. China Biotechnology, 2008, 28(1): 30-35.