Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (7): 57-63    DOI:
    
Production of Cellulases by Solid State Fermentation with Three Strains Mixed
CAI Jing-jing, DUAN Xue-hui, XIE Liang, ZHENG Xi-fang, SHEN Jiang-tao
State Key Laboratory of Food Science and Technology, School of Life Science and Food Engineering, Nanchang University, Nanchang 330047, China
Download: HTML   PDF(1233KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  In the solid culture media consisted of rice straw powder and wheat bran, the cellulases production by solid state fermentation with White rot fungi NS75, Aspergillus Niger NS83 and Saccharomyces cerevisiae SP5 three strains mixing have been investigated. The results showed that the activities of cellulases produced reached the peak value at the seventh day of fermentation process, in which the yeast Saccharomyces cerevisiae SP5 was inoculated while the White rot fungi NS75 and Aspergillus Niger NS83 had grown 2 days in the solid culture media. The β-glucosidase (β-G) and carboxymethyl cellulase (CMCase) activities produced by three strains mixed fermentation have increased 143.3% and 68.2%, respectively, than that produced by two strains mixed fermentation. The single factor and orthogonal experiment results revealed that, under the optimum fermentation conditions: dosage ratio of rice straw powder and bran powder 8:2, feed-water ratio 1:2, inoculation volume ratio of White-rot fungi NS75,Aspergillus niger NS83 and Saccharomyces cerevisiae SP5 1:2:1.5(v/v/v), 30 ℃ culture 7d, the β-G and CMCase activities produced reached 62305U/g and 30241U/g, respectively.

Key wordsCellulase      Mixed fermentation      β-glucosidase      Carboxymethyl cellulase      Rice straw powder      Saccharomyces cerevisiae     
Received: 06 March 2013      Published: 25 July 2013
ZTFLH:  Q815  
Cite this article:

CAI Jing-jing, DUAN Xue-hui, XIE Liang, ZHENG Xi-fang, SHEN Jiang-tao. Production of Cellulases by Solid State Fermentation with Three Strains Mixed. China Biotechnology, 2013, 33(7): 57-63.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I7/57

[1] Grange D C L, Haan R D, Zyl W H V. Engineering cellulolytic ability into bioprocessing organisms. Applied Microbiology and Biotechnology, 2010, 87(4): 1195-1208.
[2] Holker U, Hofer M, Lenz J. Biotechnological advantages of laboratory scale solid state fermentation with fungi. Applied Microbiology Biotechnology, 2004, 64(2): 175-186.
[3] Deswal D, Khasa Y P, Kuhad R C, et al. Optimization of cellulase production by a brown rot fungus Fomitopsis sp.RCK2010 under solid state fermentation. Bioresource Technology, 2011, 102(10): 6065-6072.
[4] Podrepsek G H, Primozic M, Knez Z, et al. Immobilization of Cellulase for Industrial Production. Chemical Engineering Transactions, 2012, 27:1974-9791.
[5] Wilson D B. Cellulases and biofuels. Current Opinion in Biotechnology, 2009, 20(3): 295-299.
[6] Sukumaran R K, Singhania R R, Pandey A K. Microbial cellulases-Production, applications and challenges. Journal of Scientific & Industrial Research, 2005, 64(11): 832-844.
[7] Karmakar M, Ray R R. Current trends in research and application of microbial cellulases. Research Journal of Microbiology, 2011, 6(1):41-53.
[8] Kuhad R C, Gupta R, Singh A. Microbial Cellulases and their industrial applications. Enzyme Research, 2011, 2011:1-10.
[9] Ryosuke Y, Naho T, Tsutomu T, et al. Cocktail δ-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microbial Cell Factories, 2010, 9: 32.
[10] 庄童琳, 李虎, 郭凤霞, 等. 黑曲霉固态混菌发酵苹果渣生产多酶生物饲料. 食品工业科技, 2010, 31(12): 171-175. Zhuang T L, Li H, Guo F X, et al. Production of bio-feed enriched of enzymes from apple pomace in solid state fermentation by Aspergillus niger. Science and Technology of Food Industry, 2010, 31(12): 171-175.
[11] Dyk J S V, Pletschke B I. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-Factors affecting enzymes, conversion and synergy. Biotechnology Advances, 2012, 30(6): 1458-1480.
[12] 陈娜, 顾金刚, 徐凤花, 等. 产纤维素酶真菌混合发酵研究进展.中国土壤与肥料, 2007, (4): 16-21. Chen N, Gu J G, Xu F H, et al. The technology of mixed fermentation with combined celluloytic fungi isolates. Soil and Fertilizer Sciences in China, 2007, (4): 16-21.
[13] 高星星. 里氏木霉与黑曲霉混合发酵产纤维素酶的研究. 安徽: 合肥工业大学, 2012. Gao X X. Study on Cellulase Production by Mixed Fermentation of Trichoderma ressei and Aspergillus niger.Anhui: HeFei University of Technology, 2012.
[14] Dhillon G S, Oberoi H S, Kaur S, et al. Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Industrial Crops and Products, 2011, 34(1): 1160-1167.
[15] Bansal N, Tewari R, Soni R, et al. Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Management, 2012, 32(7): 1341-1346.
[16] Hideno A, Inoue H, Tsukahara K, et al. Production and characterization of cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source. Enzyme and Microbial Technology, 2011, 48: 162-168.
[17] Das A, Paul T, Halder S K, et al. Production of cellulolytic enzymes by Aspergillus fumigatus ABK9 in wheat bran-rice straw mixed substrate and use of cocktail enzymes for deinking of waste of?ce paper pulp. Bioresource Technology, 2013, 128: 290-296.
[18] 王德培, 刘瑛, 夏兰英,等. 里氏木霉和酵母菌混合发酵玉米秸杆的研究. 天津轻工业学院学报, 2002, (2): 1-3. Wang D P, Liu Y, Xia L Y, et al. Study on mixed culture fermentation of Trichoderma and yeast for hydrolysis of corn straw. Journal of Tianjin University of Light Industry, 2002, (2): 1-3.
[19] Mandels M, Weber J, Pariaek R. Enhanced cellulase production by a mutant of Trichoderm viride. Applied Microbiology, 1971, 21(1): 152-154.
[20] 段学辉, 颜淑芳, 彭云召,等. 响应面法优化灰绿青霉Penicillium glaucum NS16 产酶条件. 食品与生物技术学报, 2010, 29(3): 464-470. Duan X H, Yan S F, Peng Y Z, et al. Optimization of fermentation condition for cellulase-producing pencillium glaucum NS 16 by response surface methodology. Journal of Food Science and Biotechnology, 2010, 29(3): 464-470.
[21] 刘佳, 袁兴中, 曾光明, 等. 表面活性剂对绿色木霉产纤维素酶影响的实验研究. 中国生物工程杂志, 2006, 26(8): 62-66. Liu J, Yuan X Z, Zeng G M, et al. Experimental study on the effects of surfactants on cellulase from Trichoderma viride. China Biotechnology, 2006, 26(8): 62-66.
[22] 段学辉, 胡明明, 熊福星,等. 稻草粉基混合菌发酵产纤维素酶研究. 食品工业科技, 2012, 33(16): 224-227. Duan X H, Hu M M, Xiong F X, et al. Cellulase produced by mixed strains fermentation in straw powder. Science and Technology of Food Industy, 2012, 33(16): 224-227.
[23] 邬敏辰, 郑建丰. 黑曲霉液体发酵纤维素酶的研究. 酿酒科技, 1998, (3): 25-27. Wu M C, Zheng J F. Studies on the production of cellulase by Aspergillus Niger with liquid-state. Liquor-Making Science & Technology, 1998, (3): 25-27.
[24] 陈亮, 迟乃玉, 张庆芳. 低温纤维素酶菌株 CNY086 选育及发酵培养基优化(I). 微生物学通报, 2009, 36 (10): 1547-1552. Chen L, Chi N Y, Zhang Q F. Breeding and fermentation medium optimization of cold-active cellulase strain CNY086 (I). Microbiology, 2009, 36 (10): 1547-1552.
[25] 费尚芬, 鹿宁, 刘坤,等. 白腐菌纤维素酶高酶活菌株的筛选. 安徽农业科学, 2006, 34(1): 22-23. Fei S F, Lu N, Liu K, et al. Screening of high activity cellulase of strains from white rot fungi. Journal of Anhui Agri Sci, 2006, 34(1): 22-23.
[26] Jeya M, Zhang Y W, Kim I W, et al. Enhanced saccharification of alkali-treated rice straw by cellulase from Trametes hirsuta and statistical optimization of hydrolysis conditions by RSM. Bioresource Technology, 2009, 100(21): 5155-5161.
[1] LIN Yan-mei,LUO Xiang,LI Rui-jie,QIN Xiu-lin,FENG Jia-xun. Probing the Role of N-glycosylation on the Catalytic Domain in the Activity and Secretion of Fungal Cellobiohydrolase[J]. China Biotechnology, 2021, 41(4): 18-29.
[2] XU Xiao, CHENG Chi, YUAN Kai, XUE Chuang. Research Progress of Cellulase Production in Trichoderma reesei[J]. China Biotechnology, 2021, 41(1): 52-61.
[3] WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols[J]. China Biotechnology, 2020, 40(12): 88-94.
[4] Ying-ying ZHANG,Bin TANG,Guo-cheng DU. Study on the Intracellular Glycosyl Donor and Structural Function of Cellobiose Synthase from Rhizopus stolonifer[J]. China Biotechnology, 2018, 38(4): 38-45.
[5] LAI Ya-peng, DENG Ting-ting, LIU Gang, WANG Juan. The Influence of Homologous Overexpression of BglR on β-glucosidase Activities in Myceliophthora thermophila[J]. China Biotechnology, 2017, 37(7): 64-71.
[6] MEI Xue-ang, CHEN Yan, WANG Rui-zhao, XIAO Wen-hai, WANG Ying, LI Xia, YUAN Ying-jin. Engineered Yeast Cell for Producing Zeaxanthin[J]. China Biotechnology, 2016, 36(8): 64-72.
[7] WANG Rui-zhao, PAN Cai-hui, WANG Ying, XIAO Wen-hai, YUAN Ying-jin. Design and Construction of highβ-carotene Producing Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(7): 83-91.
[8] ZHANG Wen-qian, XIAO Wen-hai, ZHOU Xiao, WANG Ying. Effect of Post-squalene Genes on the Synthesis of 7-Dehydrocholesterol in the Artificial Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(6): 39-50.
[9] MENG Qing-ting, TANG Bin. The Role of Carbon Metabolism Repressor CRE in the Regulation of Cellulase Produced by Rhizopus stolonifer[J]. China Biotechnology, 2016, 36(3): 31-37.
[10] LIANG Xin-quan, LI Ning, REN Qin, LIU Ji-dong. Progress in the Metabolic Engineering of Saccharomyces cerevisiae for L-lactic Acid Production[J]. China Biotechnology, 2016, 36(2): 109-114.
[11] ZHONG Cheng, LIU Ling-pu, LI Qing-liang, YANG Pan-fei, HAO Jun-guang, JIA Shi-ru. Analyze the Mechanism of Flavor Compounds Formation Using Metabonomics Method During Industrial Beer Fermentation[J]. China Biotechnology, 2016, 36(12): 49-58.
[12] LIU Bao-li, LIU Gao-gang, LIN Qiu-hui, LI Bing-zhi, YUAN Ying-jin. Construction of Recombinant Xylose-utilizing Saccharomyces cerevisiae by Three-plasmid Co-transformation Combinatorial Screening Method[J]. China Biotechnology, 2016, 36(12): 86-97.
[13] LIANG Xiang nan, ZHANG Kun, ZOU Shao lan, WANG Jian jun, MA Yuan yuan, HONG Jie fang. Construction and Preliminary Evaluation of Saccharomyces cerevisiae Strains Co-expressing Three Types of Cellulase Via Cocktail δ-integration[J]. China Biotechnology, 2016, 36(11): 54-62.
[14] ZHANG Xu, DING Jian, GAO Peng, GAO Min-jie, JIA Lu-qiang, TU Ting-yong, SHI Zhong-ping. Fed-batch Culture of Saccharomyces cerevisiae with Adaptive Control Based on Differential Evolution Algorithm[J]. China Biotechnology, 2016, 36(1): 68-75.
[15] SUN Huan, JIA HAI-yang, FENG XU-dong, LIU Yue-qin, LI Chun. Screening of Heat-resistant Device in Saccharomyces cerevisiae[J]. China Biotechnology, 2015, 35(3): 75-83.