Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (4): 38-45    DOI: 10.13523/j.cb.20180406
    
Study on the Intracellular Glycosyl Donor and Structural Function of Cellobiose Synthase from Rhizopus stolonifer
Ying-ying ZHANG1,Bin TANG1,2(),Guo-cheng DU1
1 School of Biotechnology, Jiangnan University, Wuxi 214122, China
2 College of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000, China
Download: HTML   PDF(1361KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cellobiose can effectively induce the production of cellulase by filamentous fungi. Our previous studies showed that Rhizopus stolonifer TP-02 has a cellobiose synthase (CBS) that can synthesize cellobiose by utilizing uridine diphosphate glucose (UDPG) as the glycosyl donor, thereby opening the self-induced synthesis pathway of cellulase from glucose. To study the intracellular biosynthesis pathway of cellobiose, the pyrithiamine resistance gene ptrA was inserted into the GDP-glucose pyrophosphorylase gene ggp by overlapping PCR. The fused gene ggp-ptrA was respectively transformed into TP-02 and △ugp for constructing the △ggp and △ugp/△ggp mutants. LC-MS was used to analyze the intracellular sugar components of mutants. The results showed that the lack of ggp has a weak effect on the synthesis of intracellular cellobiose, while the lack of ugp directly inhibits the synthesis of disaccharides. The result of RT-qPCR showed that the transcription level of cellulase genes in △ggp mutant are 20% lower than that of the original strain, while the tested gene in △ugp/△ggp are down-regulated by 80%. Furthermore, the expression levels of cellulase were also studied. However, the FPA activity of △ugp/△ggp was not detected. These results showed that UDPG is the major glycosyl donor for intracellular synthesis of cellobiose in R. stolonifer, whereas GDPG may be the substitute for UDPG, maintaining the synthesis of disaccharides in the absence of UDPG. In addition, bioinformatics methods were used to analyze the structure and function of CBS. Through alanine scanning the Asp210 and Asp300 were confirmed as the key residues of CBS to synthesize the cellobiose, providing a direction and theoretical basis for further research and rational transformation.



Key wordsCellobiose      Cellulase      Rhizopus stolonifer      Synthesis mechanism     
Received: 06 December 2017      Published: 08 May 2018
ZTFLH:  Q78  
Cite this article:

Ying-ying ZHANG,Bin TANG,Guo-cheng DU. Study on the Intracellular Glycosyl Donor and Structural Function of Cellobiose Synthase from Rhizopus stolonifer. China Biotechnology, 2018, 38(4): 38-45.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180406     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I4/38

Primers Sequences (5'-3')
ggp-F 5'-ATGGATAAAAGTGAAGAAATTCTTG-3'
ggpPtrA-F1 5'-GAAAGCCCCTACTGGCTCATATGCATGTCTCCTCCAGCTGCCATCTAC-3'
ggpPtrA-F2 5'-GTAGATGGCAGCTGGAGGAGACATGCATATGAGCCAGTAGGGGCTTTC-3'
ggpPtrA-R1 5'-CGTCAGCGCGAGTGTGCTGAGTAATTTAGAAATAGCATGTTTGATGAG-3'
ggpPtrA-R2 5'-CTCATCAAACATGCTATTTCTAAATTACTCAGCACACTCGCGCTGACG-3'
ggp-R 5'-TTATAGGTTAGCATTATGCGTTTC-3'
Table 1 The sequences of primers for overlapping PCR
Primers Sequences (5'-3')*
D210A-F 5'-GCCATCTTCGCCGCAGACTCC-3'
D210A-R 5'-GGAGTCTGCGGCGAAGATGGC-3'
S298A-F 5'-CAGCTTCGCCGAGGATTGGC-3'
S298A-R 5'-GCCAATCCTCGGCGAAGCTG-3'
D300A-F 5'-CTTCTCCGAGGCCTGGCAGC-3'
D300A-R 5'-GCTGCCAGGCCTCGGAGAAG-3'
E336A-F 5'-CACATTGCAGCCCGCAACCG-3'
E336A-R 5'-CGGTTGCGGGCTGCAATGTG-3'
W340A-F 5'-GCAACCGGGCCCACATTGGC-3'
W340A-R 5'-GCCAATGTGGGCCCGGTTGC-3'
Table 2 The sequences of primers for site-directed mutagenesis
Gene Primers Sequences (5'-3')
gpdA GPDA-F 5'-TACCGCTGCCCAGAACATC-3'
GPDA-R 5'-GGAGTGGCTGTCACCGTTC-3'
eg EG2-F 5'-TTATTGGGTTTGTTGTCAGGC-3'
EG2-R 5'-GTGCTTTGAATTGATTGCTCC-3'
bg BG3-F 5'-CGAGGACATTGCCTTGCTGA-3'
BG3-R 5'-GTTTGTGGAGGGAATAGTGGG-3'
cbh1 CBH1-F 5'-CTTATTGTGGAGGCGGTTGC-3'
CBH1-R 5'-CAGGTGGTATCGGTGGAGC-3'
cbh2 CBH2-F 5'-CCTGGCTATCCCATCCCTC-3'
CBH2-R 5'-CGTTCTGGGCTTTGATGTCG-3'
Table 3 The sequences of primers for RT-qPCR
Fig.1 Construction of △ggp and △ugp/ggp mutants
(a) Construction of fusion gene ggp-ptrA by overlapping PCR M:5 000bp DNA marker; 1: ggp; 2: ggpA+ptrA; 3: ggp-ptrA; 4: ggpB+ptrA (b) PCR identification of the mutants M:10 000bp DNA marker; 1: ugp-hygB; 2: Genome DNA of △ugp/ggp; 3: ggp-ptrA
Fig.2 Chromatographic detection of intracellular sugars
Fig.3 The transcription level of different genes
The data are presented as mean ± s.e.m. from three independent experiments. The statistical significance was calculated with the t-test, * P< 0.05
Fig.4 Interaction between CBS and its substrate molecular UDPG
Fig.5 HPLC profiles of the product synthesized by CBS and its mutants
Fig.6 Schematic diagram of the intracellular synthesis pathway of cellobiose
[1]   Payne C M, Knott B C, Mayes H B , et al. Fungal cellulases. Chem Rev, 2015,115(3):1308-1448.
doi: 10.1021/cr500351c
[2]   Lehmann L, R?nnest N P, J?rgensen C I , et al. Linking hydrolysis performance to Trichoderma reesei cellulolytic enzyme profile. Biotechnol Bioeng, 2016,113(5):1001-1010.
doi: 10.1002/bit.25871 pmid: 26524197
[3]   Mandels M, Parrish F W, Reese E T . Sophorose as an inducer of cellulase in Trichoderma viride. J Bacteriol, 1962,83(2):400-408.
[4]   Zhou Q, Xu J, Kou Y , et al. Differential involvement of β-glucosidases from Hypocrea jecorina in rapid induction of cellulase genes by cellulose and cellobiose. Eukaryot Cell, 2012,11(11):1371-1381.
doi: 10.1128/EC.00170-12 pmid: 3486029
[5]   Bischof R, Fourtis L, Limbeck A , et al. Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose. Biotechnol Biofuels, 2013,6(1):127.
doi: 10.1186/1754-6834-6-127 pmid: 24016404
[6]   Jourdier E, Cohen C, Poughon L , et al. Cellulase activity mapping of Trichoderma reesei cultivated in sugar mixtures under fed-batch conditions. Biotechnol Biofuels, 2013,6(1):79.
doi: 10.1186/1754-6834-6-79 pmid: 3700819
[7]   Hanif A, Yasmeen A, Rajoka M I . Induction, production, repression, and de-repression of exoglucanase synthesis in Aspergillus niger. Bioresource Technol, 2004,94(3):311-319.
doi: 10.1016/j.biortech.2003.12.013 pmid: 15182839
[8]   Znameroski E A, Li X, Tsai J C , et al. Evidence for transceptor function of cellodextrin transporters in Neurospora crassa. J Biol Chem, 2014,289(5):2610-2619.
doi: 10.1074/jbc.M113.533273 pmid: 3908395
[9]   Zhang Y, Tang B, Du G . Self-induction system for cellulase production by cellobiose produced from glucose in Rhizopus stolonifer. Sci Rep, 2017,7(1):P10161.
doi: 10.1038/s41598-017-10964-0 pmid: 5579273
[10]   Baxter E D, Duffus C M . Starch synthetase: Comparison of UDPG and ADPG as glucosyl donors in immature barley endosperm. Planta, 1973,114(2):195-198.
doi: 10.1007/BF00387476 pmid: 24458723
[11]   Kumar M, Turner S . Plant cellulose synthesis: CESA proteins crossing kingdoms. Phytochemistry, 2015,112:91-99.
doi: 10.1016/j.phytochem.2014.07.009 pmid: 25104231
[12]   Coradetti S T, Xiong Y, Glass N L . Analysis of a conserved cellulase transcriptional regulator reveals inducer-independent production of cellulolytic enzymes in Neurospora crassa. Microbiology Open, 2013,2(4):595-609.
doi: 10.1002/mbo3.94 pmid: 3948607
[13]   Leloir L F, Cardini C E . Biosynthesis of glycogen from uridine diphosphate glucose. J Am Chem Soc, 1957,79(23):6340-6341.
doi: 10.1021/ja01580a061
[14]   Adle L N, Gomez T A, Clark S G , et al. A novel GDP-D-glucose phosphorylase involved in quality control of the nucleoside diphosphate sugar pool in Caenorhabditis elegans and Mammals. J Biol Chem, 2011,286(24):21511-21523.
doi: 10.1074/jbc.M111.238774 pmid: 21507950
[15]   Lipp M, Brodmann P, Pietsch K , et al. IUPAC Collaborative trial study of a method to detect genetically modified soy beans & maize in dried powder. J Aoac Int, 1999,82(4):923-928.
[16]   Ho S N, Hunt H D, Horton R M , et al. Site-directed mutagenesis by overlap extension using the polymerase chain resction. Gene, 1989,77(1):51-59.
doi: 10.1016/0378-1119(89)90358-2 pmid: 2744487
[17]   Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262
[18]   Miller G L, Blum R, Glennon W E , et al. Measurement of carboxymethylcellulase activity. Anal Biochem, 1960,1(2):127-132.
doi: 10.1016/0003-2697(60)90004-X
[1] LIN Yan-mei,LUO Xiang,LI Rui-jie,QIN Xiu-lin,FENG Jia-xun. Probing the Role of N-glycosylation on the Catalytic Domain in the Activity and Secretion of Fungal Cellobiohydrolase[J]. China Biotechnology, 2021, 41(4): 18-29.
[2] XU Xiao, CHENG Chi, YUAN Kai, XUE Chuang. Research Progress of Cellulase Production in Trichoderma reesei[J]. China Biotechnology, 2021, 41(1): 52-61.
[3] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[4] MENG Qing-ting, TANG Bin. The Role of Carbon Metabolism Repressor CRE in the Regulation of Cellulase Produced by Rhizopus stolonifer[J]. China Biotechnology, 2016, 36(3): 31-37.
[5] LIANG Xiang nan, ZHANG Kun, ZOU Shao lan, WANG Jian jun, MA Yuan yuan, HONG Jie fang. Construction and Preliminary Evaluation of Saccharomyces cerevisiae Strains Co-expressing Three Types of Cellulase Via Cocktail δ-integration[J]. China Biotechnology, 2016, 36(11): 54-62.
[6] WU Qiong, WANG Meng, LI Ya-Qian, GAO Shi-Gang, YU Chuan-Jin, SUN Jia-Nan, ZHANG Tai-Long, CHEN Jie. Characterization of Cellulase Solution Produced by Leptosphaerulina chartarum SJTU59 and Analysis of Conserved Regions of Cellulase Genes[J]. China Biotechnology, 2014, 34(3): 61-67.
[7] YANG Hua-jun, ZOU Shao-lan, LIU Cheng, MA Yuan-yuan, MA Xiang-xia, HONG Jie-fang. Advance in Research on Cellulase Expression in Saccharomyces cerevisiae[J]. China Biotechnology, 2014, 34(06): 75-83.
[8] CAI Jing-jing, DUAN Xue-hui, XIE Liang, ZHENG Xi-fang, SHEN Jiang-tao. Production of Cellulases by Solid State Fermentation with Three Strains Mixed[J]. China Biotechnology, 2013, 33(7): 57-63.
[9] GU Rui-meng, LI Yong-hao, TIAN Chao-guang. The Medium Optimization of Cellulases Fermentation of Neurospora crassa by Response Surface Methodology[J]. China Biotechnology, 2012, 32(03): 76-82.
[10] CHEN Ke, HUANG Xiao, LU Lei, XING Yun, HOU Jing, WU Jie, LIU Jing-jing. Comparison of celY Gene from Erwinia chrysanthemi Expression in Escherichia coli Driven by Different Regulatory Elements[J]. China Biotechnology, 2012, 32(02): 24-28.
[11] LING Min, LIANG Gang, QIN Yong-Ling, LI Nan, LIANG Zhi-Qun. Analysis of Cellulase Regulator ACEII Interaction with cbh1 Promoter Fragment in Trichoderma koningii[J]. China Biotechnology, 2009, 29(10): 60-63.
[12] 尹娟 YIN Juan. Research Progress on Determination of Cellulase Activity and Gene Expression by Biosensor[J]. China Biotechnology, 2009, 29(01): 86-92.
[13] . Experimental Study on the Effects of surfactants on Cellulase from Trichoderma viride[J]. China Biotechnology, 2006, 26(08): 62-66.