Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (6): 79-85    DOI:
    
Medium Optimization for Rhamnolipids Production by Pseudomonas aeruginosa O-2-2 and LC-MS/MS Analysis
ZHAO Fang-long, ZHU Ling-qing, YANG Xue, LU Wen-yu
Department of Biological Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
Download: HTML   PDF(822KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Rhamnolipids are excellent biosurfactants which are widely used in biomedicine, oil recovery and environmental protection. Response surface methodology (RSM) was employed to optimize the medium for rhamnolipids production by Pseudomonas aeruginosa O-2-2. The result of the Plackett-Burman design showed that phosphate, nitrate and trace elements had significant effects on rhamnolipids production. The Box-Behnke design suggested that the optimum values of phosphate, nitrate and trace elements were 3.2g/L, 13.76g/L and 5.17ml, respectively. Rhamnolipids production reached 8.85g/L, which was in agreement with the predicted production of 8.48 g/L. Compared with the production of original level (6.24g/L), 30.8% increment had been obtained. By scaling up the fermentation to 200L fermentor with the optimal medium, the concentration of rhamonlipids reached to 70g/L, and the fermentation period was kept in 110h. When the secondary-distillation was used as a new separation process, the rhamnolipid purity was 86.6%. In general, relative content of each ingredient in this product was: mono-rhamno-mono-lipid 1.79%, mono-rhamno-di-lipid 36.83%, di-rhamno-mono-lipid 39.64%, di-rhamno-di-lipid 20.70%.



Key wordsRhamnolipids      Pseudomonas aeruginosa O-2-2      Response surface methodology      Separation progress     
Received: 06 March 2013      Published: 25 June 2013
ZTFLH:  Q819  
Cite this article:

ZHAO Fang-long, ZHU Ling-qing, YANG Xue, LU Wen-yu. Medium Optimization for Rhamnolipids Production by Pseudomonas aeruginosa O-2-2 and LC-MS/MS Analysis. China Biotechnology, 2013, 33(6): 79-85.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I6/79

[1] 张卫丽, 李淑英. 表面活性剂的应用和发展. 全面腐蚀控制, 2005, 19(6):42-45. Zhang W L, Li S Y. The application and development of surfactant. Total Corrosion Control, 2005, 19(6):42-45.
[2] 王宝辉, 张学佳, 纪巍, 等. 表面活性剂环境危害性分析. 化工进展, 2007, 26(9):1263-1268. Wang B H, Zhang X J, Ji W, et al.Hazard analysis of surfactants in ecosystem. Chemical Industry and Engineering Progress, 2007, 26(9):1263-1268.
[3] 马歌丽, 彭新榜, 马翠卿, 等. 生物表面活性剂及其应用. 中国生物工程杂志, 2003, 23(5):42-45. Ma G L, Peng X B, Ma C Q, The biosurfactants and its application. China Biotechnology, 2003, 23(5):42-45.
[4] Abdel-Mawgoud A, Hausmann R, Lépine F, et al. Rhamnolipids: detection, analysis, biosynthesis, genetic regulation, and bioengineering of production. Biosurfactants, 2011, 20:13-55.
[5] Long X, Zhang G, Shen C, et al. Application of rhamnolipid as a novel biodemulsifier for destabilizing waste crude oil. Bioresource Technology, 2013, 131:1-5.
[6] Henkel M, Müller M M, Kügler J H, et al. Rhamnolipids as biosurfactants from renewable resources: Concepts for next-generation rhamnolipid production. Process Biochemistry, 2012, 47(8):1207-1219.
[7] Wu J Y, Yeh K L, Lu W B, et al. Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresource Technology, 2008, 99(5):1157-1164.
[8] 马满英, 施周, 刘有势, 等. 假单胞菌 AB93066 产鼠李糖脂发酵条件的优化. 精细化工, 2008, 25(3):221-225. Ma M Y, Shi Z, Liu Y S. Optimization on fermentation conditions of rhamnolipids production by Pseudomonas AB93066. Fine Chemicals, 2008, 25(3):221-225.
[9] Giani C, Wullbrandt D, Rothert R, et al. Pseudomonas aeruginosa and its use in a process for the biotechnological preparation of L-rhamnose. USA, 5658793, 1997,8,19.
[10] Abalos A, Pinazo A, Infante M R, et al. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir, 2001, 17(5): 1367-1371.
[11] Chen G, Zhu H. Pseudomonas aeruginosa lipopolysaccharide production in the presence of rhamnolipid. Colloids and Surfaces B: Biointerfaces, 2005, 41(1):43-48.
[12] Cohen R, Exerowa D. Surface forces and properties of foam films from rhamnolipid biosurfactants. Advances in Colloid and Interface Science, 2007, 134:24-34.
[13] Guo W Q, Ren N Q, Wang X J, et al. Optimization of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology. Bioresource Technology, 2009, 100(3): 1192-1196.
[14] Bergström S, Theorell H, Davide H. Pyolipic acid: a metabolic product of Pseudomonas pyocyanea active against Mycobacterium tuberculosis. Arch Biochem Biophys, 1946, 10:165-166.
[15] George S, Jayachandran K. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. Journal of Applied Microbiology, 2013, 114(2):373-383.
[16] Kirti V. Potential of new microbial isolates for biosurfactant production using combinations of distillery waste with other industrial wastes. Journal of Petroleum & Environmental Biotechnology, 2012, doi:10.4172/2157-7463.S1-002.
[17] Cabrera-Valladares N, Richardson A P, Olvera C, et al. Monorhamnolipids and 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Applied Microbiology and Biotechnology, 2006, 73(1):187-194.

[1] LI Liang, WANG Ze-jian, GUO Mei-jin, CHU Ju, ZHUANG Ying-ping, ZHANG Si-liang. Mutagenesis Breeding and Optimization of Cephalosporin C by Cephalosporium acremonium[J]. China Biotechnology, 2014, 34(8): 61-66.
[2] HAN Qi-can, HUO Guang-hua, LUO Gui-xiang. Screening, Identification and Fermentation Process Optimization of a Wild Fungus Against Pathogens[J]. China Biotechnology, 2014, 34(5): 66-74.
[3] ZHANG Qi, NING Xi-bin, ZHANG Ji-lun. Optimization of Cultivation Conditions for Protease Production from Marine Bacteria by Response Surface Methodology[J]. China Biotechnology, 2013, 33(8): 105-110.
[4] WANG Dan, ZHENG Hong-li, JI Xiao-jun, GAO Zhen. Optimization the Accumulation of Astaxanthin in Chlorella Zofingiensis Using Response Surface Methodology[J]. China Biotechnology, 2013, 33(7): 71-81.
[5] ZHAO Jian-feng, XIN Xing, WEI Pei-pei, QIAN Ai-rong, Akateh Tazifua Alfred, SHANG Peng, YANG Shu-lin. Effects of High Magneto-Gravitational Environment on Pseudomonas aeruginosa N1207[J]. China Biotechnology, 2013, 33(2): 27-33.
[6] WU Wei-ping, CHEN Jie, LI Ya-qian, CHEN Li-jie, DUAN Yu-xi. Optimization of Fermentation Process for Chlamydospores of Trichoderma asperellum by Response Surface Methodology[J]. China Biotechnology, 2013, 33(12): 97-104.
[7] ZHANG Wen, ZHANG Shu-qing, MA Xiao-tong, HE Cui-cui. The Optimization Research of Fermentation Medium of γ-Polyglutamic Acid(γ-PGA) Produced by Bacillus natto[J]. China Biotechnology, 2013, 33(11): 44-50.
[8] CHEN Jie, WEI Hong-gang, LUO Yuan-chan, ZHANG Dao-jing, LI Shu-lan, TIAN Li, LI Yuan-guang. Medium Optimization for the Production of New Antifungl Cyclic Lipopeptide Marinhysin A by Bacillus Marinus B-9987[J]. China Biotechnology, 2013, 33(1): 84-89.
[9] CHEN Jie-mei, XU Cong-cong, CHANG Lei, LIU Yong-ping, MIAO Bing-xuan. Study on Optimization of Soybean Meal Solid-state Fermentation Process for Producing Soybean Antioxidative Peptide by Response Surface Methodology[J]. China Biotechnology, 2012, 32(12): 59-65.
[10] YANG Qi, WANG Ke-rong, KONG Wei-bao, YANG Hong, CAO Hai, ZHANG Xin-yun. Optimization of the Mixotrophic Culture Medium Composition for Biomass Production by Chlorella vulgaris Using Response Surface Methodology[J]. China Biotechnology, 2012, 32(09): 70-75.
[11] AI Zuo-zuo, YAN Ri-ming, YUAN Jin-yun, ZHANG Zhi-bin, ZHU Du. Optimization of Single Cell Oil Produced from Cassava Starch by Response Surface Methodology[J]. China Biotechnology, 2012, 32(07): 66-72.
[12] GU Rui-meng, LI Yong-hao, TIAN Chao-guang. The Medium Optimization of Cellulases Fermentation of Neurospora crassa by Response Surface Methodology[J]. China Biotechnology, 2012, 32(03): 76-82.
[13] SONG Ping, CU Xiao-Ling, HU Yi, XIE Ning-Chang. Optimization of Lipase Production Conditions by Bacillus subtilis Using Surface Methodology[J]. China Biotechnology, 2010, 30(08): 100-105.
[14] RUAN Wen-Bing, CHEN Bi-Qin, CHEN Su-Hua, CHEN Bing-Mei, HU Xiao-Beng. Optimization of (R)-Mandelic acid Fermentation Medium by Using Response Surface Methodology[J]. China Biotechnology, 2010, 30(08): 112-117.
[15] TU Wei-Gui, LI Zhong-Hai, HUANG Guo-Hua, CHEN Cai-Qiong. Optimization of Cultural Condition of Ganoderma lucidum in the Compound Culture Medium by Response Surface Methodology[J]. China Biotechnology, 2009, 29(12): 37-42.