Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (12): 104-108    DOI:
    
Study on the Inhibition of Hepatitis B Virus by Single-chain Fv Fragment
LIU Wei-xia, CHEN Zhi
State Key Laboratory of Infectious Disease Diagnosis and Treatment, First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou 310003, China
Download: HTML   PDF(421KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Single-chain Fv Fragment (ScFv) has been introduced into the study of inhibiting Hepatitis B virus (HBV) replication. Nowadays, ScFvs bound to HBV pre-S1, core antigen, DNA polymerase and X protein have been developed, respectively. ScFv can make the coupled molecule with therapeutic effects localized at the target site. Thus, affinity with the antigen, internalization property and structural stability of ScFv are the main factors limiting the utilization of ScFv.



Key wordsSingle-chain Fv Fragments      HBV      Targeted inhibition     
Received: 15 August 2011      Published: 25 December 2011
ZTFLH:  Q819  
Cite this article:

LIU Wei-xia, CHEN Zhi. Study on the Inhibition of Hepatitis B Virus by Single-chain Fv Fragment. China Biotechnology, 2011, 31(12): 104-108.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I12/104


[1] Arndt K M, Muller K M, Pluckthun A. Factors influencing the dimer to monomer transition of an antibody single-chain Fv fragment. Biochemistry 1998, 37(37):12918-12926.

[2] Bird R E, Hardman K D, Jacobson J W, et al. Single-chain antigen-binding proteins. Science, 1988, 242(4877):423-426.

[3] Le Seyec J, Chouteau P, Cannie I, et al. Infection process of the hepatitis B virus depends on the presence of a defined sequence in the pre-S1 domain. J Virol, 1999, 73(3):2052-2057.

[4] Park S G, Jeong Y J, Lee Y Y, et al. Hepatitis B virus-neutralizing anti-pre-S1 human antibody fragments from large naive antibody phage library. Antiviral Res, 2005, 68(3):109-115.

[5] Scaglioni P P, Melegari M, Wands J R. Characterization of hepatitis B virus core mutants that inhibit viral replication. Virology, 1994, 205(1):112-120.

[6] Yamamoto M, Hayashi N, Takehara T, et al. Intracellular single-chain antibody against hepatitis B virus core protein inhibits the replication of hepatitis B virus in cultured cells. Hepatology, 1999, 30(1):300-307.

[7] 汤正好, 余永胜, 马会慧, 等. 非复制型腺病毒介导抗-HBC单链抗体的细胞内表达. 中华肝脏病杂志, 2006, 14(8):587-589. Tang Z H, Yu Y S, Ma H H, et al. Chin J Hepatol, 2006, 14(8):587-589.

[8] Zu Putlitz J, Lanford R E, Carlson R I, et al. Properties of monoclonal antibodies directed against hepatitis B virus polymerase protein. J Virol, 1999, 73(5):4188-4196.

[9] Lee M S, Kwon M H, Kim K H, et al. Selection of scFvs specific for HBV DNA polymerase using ribosome display. J Immunol Methods, 2004, 284(1-2):147-157.

[10] Diamantis I D, McGandy C E, Chen T J, et al. Hepatitis B X-gene expression in hepatocellular carcinoma. J Hepatol, 1992, 15(3): 400-403.

[11] Koike K, Moriya K, Iino S, et al. High-level expression of hepatitis B virus HBx gene and hepatocarcinogenesis in transgenic mice. Hepatology, 1994, 19(4): 810-819.

[12] Jin Y H, Kwon M H, Kim K, et al. An intracellular antibody can suppress tumorigenicity in hepatitis B virus X-expressing cells. Cancer Immunol Immunother, 2006, 55(5): 569-578.

[13] Blatt L M, Davis J M, Klein S B, et al. The biologic activity and molecular characterization of a novel synthetic interferon-alpha species, consensus interferon. J Interferon Cytokine Res, 1996, 16(7): 489-499.

[14] 刘顺爱, 浅野龙太郎, 王学, 等. 人源抗HBsAg ScFv与重组复合干扰素融合蛋白的高效表达及活性鉴定. 中国免疫学杂志, 2004, 20(9):629-632, 638. Liu S A, Ryutaro Asano, Wang X, et al. Chin J Immunol, 2004, 20(9):629-632, 638.

[15] Shlomai A, Shaul Y. Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology, 2003, 37(4):764-670.

[16] McCaffrey A P, Nakai H, Pandey K, et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol, 2003, 21(6):639-644.

[17] Song E, Zhu P, Lee S K, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol, 2005, 23(6):709-717.

[18] Wen W H, Liu J Y, Qin W J, et al. Targeted inhibition of HBV gene expression by single-chain antibody mediated small interfering RNA delivery. Hepatology, 2007, 46(1): 84-94.

[19] Lindgren M, Hallbrink M, Prochiantz A, et al. Cell-penetrating peptides. Trends Pharmacol Sci, 2000, 21(3):99-103.

[20] Ryu J, Han K, Park J, et al. Enhanced uptake of a heterologous protein with an HIV-1 Tat protein transduction domains (PTD) at both termini. Mol Cells, 2003, 16(3):385-391.

[21] Vives E, Richard J P, Rispal C, et al. TAT peptide internalization: seeking the mechanism of entry. Curr Protein Pept Sci, 2003, 4(2):125-132.

[22] 孟艳玲, 温伟红, 薛茜, 等. 人抗HBsAg单链抗体/鱼精蛋白截短体融合蛋白基因的构建、表达及活性鉴定. 第四军医大学学报,2006, 26(20):1828-1831. Meng Y L, Wen W H, Xue Q, et al. Journal of the Fourth Miliary Medical University, 2006, 26(20):1828-1831.

[23] He D, Yang H, Lin Q, et al. Arg9-peptide facilitates the internalization of an anti-CEA immunotoxin and potentiates its specific cytotoxicity to target cells. Int J Biochem Cell Biol, 2005, 37(1):192-205.

[24] 薛茜, 温伟红, 孟艳玲, 等. 含Arg9的人抗HBsAg单链抗体/EGFP融合蛋白基因的构建、表达和内化作用的研究. 中国生物工程杂志, 2006, 26(7):1-6. Xue Q, Wen W H, Meng Y L, et al. China Biotechnology, 2006, 26(7):1-6.

[25] Xu J L, Davis M M. Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity, 2000, 13(1):37-45.

[26] Park S G, Jung Y J, Lee Y Y, et al. Improvement of neutralizing activity of human scFv antibodies against hepatitis B virus binding using CDR3 V(H) mutant library. Viral Immunol, 2006, 19(1):115-123.

[27] Forrer P, Jung S, Pluckthun A. Beyond binding: using phage display to select for structure, folding and enzymatic activity in proteins. Curr Opin Struct Biol, 1999, 9(4):514-520.

[28] Edwards B M, Barash S C, Main S H, et al. The remarkable flexibility of the human antibody repertoire; isolation of over one thousand different antibodies to a single protein, BLyS. J Mol Biol, 2003, 334(1):103-118.

[29] Baker K P, Edwards B M, Main S H, et al. Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheum, 2003, 48(11):3253-3265.

[30] Hanes J, Pluckthun A. In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A, 1997, 94(10): 4937-4942.

[31] Hanes J, Jermutus L, Weber-Bornhauser S, et al. Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc Natl Acad Sci U S A, 1998, 95(24):14130-14135.

[32] He M, Taussig M J. Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Res, 1997, 25(24):5132-5134.

[33] Groves M, Lane S, Douthwaite J, et al. Affinity maturation of phage display antibody populations using ribosome display. J Immunol Methods, 2006, 313(1-2):129-139.

[34] Lillo A M, Sun C, Gao C, et al. A human single-chain antibody specific for integrin alpha3beta1 capable of cell internalization and delivery of antitumor agents. Chem Biol, 2004, 11(7):897-906.

[35] Durrbach A, Angevin E, Poncet P, et al. Antibody-mediated endocytosis of G250 tumor-associated antigen allows targeted gene transfer to human renal cell carcinoma in vitro. Cancer Gene Ther, 1999, 6(6):564-571.

[36] Deng S X, Hanson E, Sanz I. In vivo cell penetration and intracellular transport of anti-Sm and anti-La autoantibodies. Int Immunol, 2000, 12(4):415-423.

[37] Wen W H, Qin W J, Gao H, et al. An hepatitis B virus surface antigen specific single chain of variable fragment derived from a natural immune antigen binding fragment phage display library is specifically internalized by HepG2.2.15 cells. J Viral Hepat, 2007, 14(7):512-519.

[38] Huston J S, McCartney J, Tai M S, et al. Medical applications of single-chain antibodies. Int Rev Immunol, 1993, 10(2-3):195-217.

[39] Harris B. Exploiting antibody-based technologies to manage environmental pollution. Trends Biotechnol, 1999, 17(7):290-296.

[40] Proba K, Honegger A, Pluckthun A. A natural antibody missing a cysteine in VH: consequences for thermodynamic stability and folding. J Mol Biol, 1997, 265, (2), 161-172.

[41] Glockshuber R, Schmidt T, Pluckthun A. The disulfide bonds in antibody variable domains: effects on stability, folding in vitro, and functional expression in Escherichia coli. Biochemistry, 1992, 31(5):1270-1279.

[42] Cattaneo A, Biocca S. The selection of intracellular antibodies. Trends Biotechnol, 1999, 17(3):115-121.

[43] Visintin M, Tse E, Axelson H, et al. Selection of antibodies for intracellular function using a two-hybrid in vivo system. Proc Natl Acad Sci U S A, 1999, 96(21):11723-11728.

[44] Worn A, Pluckthun A. Stability engineering of antibody single-chain Fv fragments. J Mol Biol, 2001, 305(5):989-1010.

[45] Proba K, Honegger A, Pluckthun A. A natural antibody missing a cysteine in VH: consequences for thermodynamic stability and folding. J Mol Biol, 1997, 265, (2), 161-172.

[46] Jung S, Honegger A, Pluckthun A. Selection for improved protein stability by phage display. J Mol Biol, 1999, 294(1):163-180.

[47] Jermutus L, Honegger A, Schwesinger F, et al. Tailoring in vitro evolution for protein affinity or stability. Proc Natl Acad Sci U S A, 2001, 98(1):75-80.

[48] Martineau P, Jones P, Winter G. Expression of an antibody fragment at high levels in the bacterial cytoplasm. J Mol Biol, 1998, 280(1):117-127.

[49] Visintin M, Tse E, Axelson H, et al. Selection of antibodies for intracellular function using a two-hybrid in vivo system. Proc Natl Acad Sci U S A, 1999, 96(21):11723-11728.

[1] LIU Li-yan,LIU Qi-qi,ZHANG Ying,WANG Sheng-qi. The Study of a Novel Nucleic Acid Detection Technology by Double-stranded Probe Real-time PCR[J]. China Biotechnology, 2020, 40(11): 28-34.
[2] XU Yan,LIU Zheng-yun,ZHANG Wan-ling,WANG Sheng-yu,WANG Huan. Effect of Targeted Interference with TAGLN Expression on Biological Behavior of HBV-Positive Hepatocellular Carcinoma Cells and Its Mechanisms[J]. China Biotechnology, 2019, 39(11): 13-21.
[3] Li-li YU,Bo HU,Xue LI,Nai-shuo ZHU. Identification of Protein-protein Interaction of Hepatitis B Virus X Protein and Tab1 in Vivo and in Vitro[J]. China Biotechnology, 2018, 38(7): 1-6.
[4] YI Xue-rui, YUAN You-cheng, GONG Liang, ZHANG Xin-rui, LI Na, KONG Xiang-ping. The Inhibition of HBsAg of Natural Compounds and Bortezomib on Primary Hepatocytes of HBV-Tg Mice and the Proteome Analysis[J]. China Biotechnology, 2015, 35(11): 29-35.
[5] GUO Gong-Min, TUN Xiao-Ji, LI Xiang, ZHOU Yan-Rong, LIN Yan-Li, XIONG Fu-Yin, XUE Shi-Wei, CHEN Gong-Xing, CHEN Shu-Lin. Establishment of the Transgenic Mice Expressing the HBV Receptor Human ASGPR[J]. China Biotechnology, 2010, 30(05): 87-91.
[6] . Inhibition of Hepatitis B Virus by Small Interfering RNA Expressed from Adenovirus-associated Virus Vectors[J]. China Biotechnology, 2010, 30(04): 49-53.
[7] . The Genetic Stability of Replicating HBV Transgenic Mice[J]. China Biotechnology, 2008, 28(5): 17-21.
[8] . [J]. China Biotechnology, 1998, 18(3): 41-42,40.
[9] . [J]. China Biotechnology, 1997, 17(1): 56-58.